
SwiSh: Distributed Shared
State Abstractions for

Programmable Switches

Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok Kim, Shir Landau Feibish,
Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula, Mark Silberstein

Stateful Packet Processing

Programmable SwitchFixed-function Switch

Stateless processing Stateful processing

2

Current Trend: In-Switch Acceleration
SilkRoad: Making Stateful Layer-4 Load Balancing

Fast and Cheap Using Switching ASICs
[SIGCOMM 2017]

Heavy-Hitter Detection Entirely in the Data
Plane

[SOSR 2017]

Offloading Real-time DDoS Attack Detection
to Programmable Data Planes

[IM 2019]

Cheetah: Accelerating Database Queries with
Switch Pruning
[SIGMOD 2020]

3

Designed for a single-switch

The Case for Many-Switch Designs

Not all information is available on all switches

Scalability AvailabilityLocality

4

Example: Reactive Applications (DDoS detector)

5

Forwarding
Logic

Frequency
estimation

6

Example: Reactive Applications (DDoS detector)

Challenge: Network-Wide DDoS Detector
Controller

Mismatch between the
control and data plane

processing rate

An ad-hoc solution

7

Our Work: Data Plane Replication

Sketches are replicated
entirely in the data-plane with

provable consistency
guarantees 8

Data-plane replication opens the door
for new in-switch application designs

Agenda

• The case for data-plane replication

• SwiSh design and challenges

• Experimental results

9

SwiSh Design

SwiSh Protocol

Shared
variable

Shared
variable

3 different
consistency levels for

shared variables

Reusable APIs for
application developersSwiSh API

One big switch

10

In-Switch Replication Protocols

• Strong Read-Optimized (SRO)
• NAT

• Eventual Write-Optimized (EWO)
• Rate limiter

• Strong Delay-Writes (SDW)
• Sketch-based applications

11

SDW Challenges

12

• C1: What is the most suitable consistency level for replicating
sketches?

• C2: How to deal with packet drops?

C1: Consistency vs. Performance

13

What is the right
consistency level?

How efficient can
the protocol be?

C1: Consistency vs. Performance

Consistency level

Weak

Updates

High bandwidth overhead

Switches have different
views of the sketch

Inconsistent

14

C1: Consistency vs. Performance

Consistency level

Strong

Chain Replication

High latency overhead

Switches cannot apply
updates concurrently

15

Solution: Strong Delayed-Writes (SDW)

Consistency level

r-relaxed strong
linearizability

SDW protocol

Low latency
Constant #replication messages

Provable precise error
bounds for sketches

16

Provably correct

SDW Protocol

Read Update Sync

17

SDW Protocol

Reads and writes
are applied locally

Read Update Sync

18

SDW Protocol

Round-based
protocolWindow id = 0

Sync
Window id = 0

Sync

19

SDW Protocol

Window id = 0

Updates

Sync
Window id = 0

Sync

20

SDW Protocol

Window id = 0

Updates

ACK

Sync
Window id = 0

Sync

21

C2: Dealing with Packet Drops

Window id = 0

Updates

Sync
Window id = 0

Sync

22

Common solution: implementing reliable delivery over an
unreliable network

C2: Packet Buffering is Expensive

Window id = 0

Updates

Sync
Window id = 0

Sync

23

Solution: Reproducible Updates

Window id = 0

Rebuild updates from the buffer

Sync
Window id = 0

Sync

24

ACK-CHECK

What if we already merged
updates from other switches?

Solution: Reproducible Updates

Sync-Source

25

Sync-Merge

SDW Protocol

Window id = 0

Once all updates and ACKs
are received we can slide

the window

Read Update

Sync

Window id = 1

Sync

Read Update

26

Efficient Register Swapping

Sync-Merge Sync-SourceRead Update

Register Register

27

In the paper…

• Theoretical proof of SDW consistency guarantees

• Recovery protocols

• Asymmetric topologies
• Ready phase

• SDW design

• Eventual Write-Optimized (EWO)
• Eventual consistency (low read/write latency)

• Strong Read-Optimized (SRO)
• Strong consistency

28

Evaluation

• Three real-world application:
• NAT

• Rate limiter

• DDoS Detector

• Microbenchmarks and scalability analysis

• Recovery time

29

Evaluation

30

Super-spreader Detector

Attacker

50%
50%

31

#(S, dst) > 1K -> Block

Sends 10K packets with the
same source IP to different

destinations

We measure how many
packets are received

Push Design

Attacker

50%
50%

32

#(S, dst) > 0.5K -> Notify(S)
#Updates(S) == 2 -> Block(S)

Pull Design

Attacker

50%
50%

33

#(S, dst) > 0.5K -> Store(S)

#Ocurrences(S) == 2 -> Block(S)

Data Plane-Only Design

Attacker

34

50%
50%

SDW replicates the sketch

Super-spreader Detector: Results

35

M
o

re
 p

ac
ke

ts
 a

re
 p

as
si

n
g

More sources to process

Ideal

Super-spreader Detector

36

Packet drops at the
controller

The controller blocks
sources that won’t be

used in the future

SDW performs ideally

Conclusions

• Data plane replication is essential for reactive in-switch applications

• SwiSh provide reusable APIs for building distributed in-switch
applications

• SwiSh provides a provably correct SDW protocol for sketch replication

• SwiSh is practical, performant and fault tolerant

• Rethink distributed in-switch applications design

37liorz@campus.technion.ac.il

Thank you!
Questions?

