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Stateful Packet Processing

Fixed-function Switch Programmable Switch
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Current Trend: In-Switch Acceleration

SilkRoad: Making Stateful Layer-4 Load Balancing Offloading Real-time DDoS Attack Detection
Fast and Cheap Using Switching ASICs to Programmable Data Planes
[SIGCOMM 2017] [IM 2019]

N\ /

Heavy-Hitter Detection Entirely in the Data
Plane
[SOSR 2017]

Cheetah: Accelerating Database Queries with
Switch Pruning
[SIGMOD 2020]

Designed for a single-switch




The Case for Many-Switch Designs
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[ Not all information is available on all switches




Example: Reactive Applications (DDoS detector)




Example: Reactive Applications (DDoS detector)
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Challenge: Network-Wide DDoS Detector

Mismatch between the
control and data plane
processing rate

‘ Controller

An ad-hoc solution }




Our Work: Data Plane Replication
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Data-plane replication opens the door
for new in-switch application designs
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(_S/kc% are replicated )

entirely in the data-plane with
provable consistency
\_ guarantees y




Agenda

* SwiSh design and challenges



SwiSh Design

Swish AP Reusable APIs for
. m wi application developers
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One big switch
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In-Switch Replication Protocols

e Strong Delay-Writes (SDW)
» Sketch-based applications
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SDW Challenges

* C1: What is the most suitable consistency level for replicating
sketches?

* C2: How to deal with packet drops?
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C1: Consistency vs. Performance

How efficient can - What is the ”ght
the protocol be? consistency Ievel?
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C1: Consistency vs. Performance

Weak
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Updates

[ High bandwidth overhead

Con5|stency level Switches have different
(_ views of the sketch
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C1: Consistency vs. Performance

ﬂ

Consistency level [

Switches cannot apply
updates concurrently

Strong

=
Chain Replication

[ High latency c‘)m
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Solution: Strong Delayed-Writes (SDW)

Provable precise error

Consistency level
bounds for sketches

[ Provably correct = :

r-relaxed strong

linearizability

>

SDW protocol

Low latency
Constant #replication messages
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SDW Protocol

Read Update Sync

S e
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SDW Protocol
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SDW Protocol

Windowid =0

Sync

J

Round-based
protocol
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Windowid=0

Sync
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SDW Protocol

Windowid =0

Sync

Updates

Windowid=0

Sync
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SDW Protocol

Windowid =0

Sync

Updates

ACK

Windowid=0

Sync
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C2: Dealing with Packet Drops

Window id = 0 Window id = 0

Sync Sync

Updates 0_

Common solution: implementing reliable delivery over an
unreliable network
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C2: Packet Buffering is Expensive

Windowid =0

Sync

Updates 0_

Windowid =0

Sync
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Solution: Reproducible Updates

Window id = 0 Window id = 0

~
Sync What if we already merged Sync
updates from other switches?

J

Rebuild updates from the buffer
>

|

ACK-CHECK
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Solution: Reproducible Updates

Sync-Source Sync-Merge
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SDW Protocol

Windowid =0 Windowid=1

( N
Once all updates and ACKs
are received we can slide
the window
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Sync Sync

: Read Update :
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Efficient Register Swapping

Register Register
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In the paper...

* Theoretical proof of SDW consistency guarantees
* Recovery protocols

* Asymmetric topologies
* Ready phase

 SDW design
* Eventual Write-Optimized (EWO)

* Eventual consistency (low read/write latency)

e Strong Read-Optimized (SRO)
e Strong consistency
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Evaluation

* Three real-world application:

e NAT
e Rate limiter
* DDoS Detector

* Microbenchmarks and scalability analysis

* Recovery time
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Evaluation
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Super-spreader Detector
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Push Design

#Updates(S) == 2 -> Block(S) ]

[ #(S, dst) > 0.5K -> Notify(S)
Controller

Switch
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Attacker Client




Pull Design

#(S, dst) > 0.5K -> Store(S)
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Data Plane-Only Design

SDW replicates the sketch ]

Switch 1 Switch 2

__________________________________
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More packets are passing

Super-spreader Detector: Results
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Packet drops at the J
Super-spreader Detector controller
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Conclusions

e Data plane replication is essential for reactive in-switch applications

* SwiSh provide reusable APIs for building distributed in-switch
applications

* SwiSh provides a provably correct SDW protocol for sketch replication
e SwiSh is practical, performant and fault tolerant
* Rethink distributed in-switch applications design

Thank you!
Questions?

‘;A@q’ liorz@campus.technion.ac.il



