SwiSh: Distributed Shared
State Abstractions for
Programmable Switches

Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok Kim, Shir Landau Feibish,
Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula, Mark Silberstein

TECHNION

Israel Institute
of Technology

l o A
o
| FVF AMNON U'0IIINN
. MlcrOSOft Acceléerated Computing EEOQPE-.NQ-UN°|V|ERQS-ITY,‘°°Fﬂ‘j}& u
ystems Lab




Stateful Packet Processing

Fixed-function Switch Programmable Switch

=)

ml
83—

Stateless processing Stateful processing



Current Trend: In-Switch Acceleration

SilkRoad: Making Stateful Layer-4 Load Balancing Offloading Real-time DDoS Attack Detection
Fast and Cheap Using Switching ASICs to Programmable Data Planes
[SIGCOMM 2017] [IM 2019]

N\ /

Heavy-Hitter Detection Entirely in the Data
Plane
[SOSR 2017]

Cheetah: Accelerating Database Queries with
Switch Pruning
[SIGMOD 2020]

Designed for a single-switch




The Case for Many-Switch Designs

Locality
il

|

|

|

|

|

.
I (o]
|

|

|

|

|

|

|

I

|

|

|

|

[ Not all information is available on all switches




Example: Reactive Applications (DDoS detector)




Example: Reactive Applications (DDoS detector)

m—

‘———L‘ Forwarding
— m— Logic

Frequency
estimation




Challenge: Network-Wide DDoS Detector

Mismatch between the
control and data plane
processing rate

‘ Controller

An ad-hoc solution }




Our Work: Data Plane Replication

r | | | | B

Data-plane replication opens the door
for new in-switch application designs

\. J

(_S/kc% are replicated )

entirely in the data-plane with
provable consistency
\_ guarantees y




Agenda

* SwiSh design and challenges



SwiSh Design

Swish AP Reusable APIs for
. m wi application developers
</[>

9
<[> @l 3 different }

consistency levels for

/ \ shared variables

Shared
variable

Shared

A V-

variable
A Sy,
SwiSh Protocol

One big switch

10



In-Switch Replication Protocols

e Strong Delay-Writes (SDW)
» Sketch-based applications

11



SDW Challenges

* C1: What is the most suitable consistency level for replicating
sketches?

* C2: How to deal with packet drops?

12



C1: Consistency vs. Performance

How efficient can - What is the ”ght
the protocol be? consistency Ievel?

#"@*



C1: Consistency vs. Performance

Weak

-—)

=
Updates

[ High bandwidth overhead

Con5|stency level Switches have different
(_ views of the sketch

14



C1: Consistency vs. Performance

ﬂ

Consistency level [

Switches cannot apply
updates concurrently

Strong

=
Chain Replication

[ High latency c‘)m

15



Solution: Strong Delayed-Writes (SDW)

Provable precise error

Consistency level
bounds for sketches

[ Provably correct = :

r-relaxed strong

linearizability

>

SDW protocol

Low latency
Constant #replication messages

16



SDW Protocol

Read Update Sync

S e

17



SDW Protocol

[

Reads and writes Read Update Sync
— - -

. i
=

18



SDW Protocol

Windowid =0

Sync

J

Round-based
protocol

|

Windowid=0

Sync

19



SDW Protocol

Windowid =0

Sync

Updates

Windowid=0

Sync

20



SDW Protocol

Windowid =0

Sync

Updates

ACK

Windowid=0

Sync

21



C2: Dealing with Packet Drops

Window id = 0 Window id = 0

Sync Sync

Updates 0_

Common solution: implementing reliable delivery over an
unreliable network

22



C2: Packet Buffering is Expensive

Windowid =0

Sync

Updates 0_

Windowid =0

Sync

23



Solution: Reproducible Updates

Window id = 0 Window id = 0

~
Sync What if we already merged Sync
updates from other switches?

J

Rebuild updates from the buffer
>

|

ACK-CHECK

24




Solution: Reproducible Updates

Sync-Source Sync-Merge

25



SDW Protocol

Windowid =0 Windowid=1

( N
Once all updates and ACKs
are received we can slide
the window

=)

Sync Sync

: Read Update :

Read Update




Efficient Register Swapping

Register Register

27



In the paper...

* Theoretical proof of SDW consistency guarantees
* Recovery protocols

* Asymmetric topologies
* Ready phase

 SDW design
* Eventual Write-Optimized (EWO)

* Eventual consistency (low read/write latency)

e Strong Read-Optimized (SRO)
e Strong consistency

28



Evaluation

* Three real-world application:

e NAT
e Rate limiter
* DDoS Detector

* Microbenchmarks and scalability analysis

* Recovery time

29



Evaluation

Controller

;
Switch 1

_________________

_________________

3
Switch 2

_________________

_________________

30



Super-spreader Detector

r

L

A #(S, dst) > 1K -> Block

~\

J

ffffffffffffffff

Attacker

Switch 1

_________________

Controller

v

—_ = 4

r - —

L — —

v

Switch 2
“““ )
ECMp  TPel

Sends 10K packets with the
same source IP to different

destinations

We measure how many
packets are received

31



Push Design

#Updates(S) == 2 -> Block(S) ]

[ #(S, dst) > 0.5K -> Notify(S)
Controller

Switch

__________________________________

Attacker Client




Pull Design

#(S, dst) > 0.5K -> Store(S)

______

ffffff

______

Attacker

Controller

___________

!
fffffffffff %

_—— - — — — — — — 4

#Ocurrences(S) == 2 -> Block(S) ]

Client

_________________

S |

r—— - - - - - - - - - - — — — 1

_________________

33



Data Plane-Only Design

SDW replicates the sketch ]

Switch 1 Switch 2

__________________________________

34



More packets are passing

Super-spreader Detector: Results

§ 100

= 80

S

»vn 60

=P 40

2

8 20 Ideal
O |

~

0 500 1,000 1,500

Number of DDoS sources per second

More sources to process

—

2,000

35



Packet drops at the J
Super-spreader Detector controller

~ 100 ———————————— o

N 80 [ : —""-

: o" N\
c%) 60 |- e Rl The controller blocks

- e sources that won’t be
oS 40| A . usedin the future |
.z ,o’:t:“!‘

O - —":“‘““

Q 20 P e

)

¥4

| | |
[ SDW performs ideally J 500 1,000 1,500 2,000
~umber of DDoS sources per second

w9+ Baseline (push) --e-- Baseline (pull) == SDW

36



Conclusions

e Data plane replication is essential for reactive in-switch applications

* SwiSh provide reusable APIs for building distributed in-switch
applications

* SwiSh provides a provably correct SDW protocol for sketch replication
e SwiSh is practical, performant and fault tolerant
* Rethink distributed in-switch applications design

Thank you!
Questions?

‘;A@q’ liorz@campus.technion.ac.il



