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Abstract
Many recent efforts have demonstrated the performance benefits
of running datacenter functions (e.g., NATs, load balancers, moni-
toring) on programmable switches. However, a key missing piece
remains: fault tolerance. This is especially critical as the network is
no longer stateless and pure endpoint recovery does not suffice. In
this paper, we design and implement RedPlane, a fault-tolerant state
store for stateful in-switch applications. This provides in-switch
applications consistent access to their state, even if the switch they
run on fails or traffic is rerouted to an alternative switch.We address
key challenges in devising a practical, provably correct replication
protocol and implementing it in the switch data plane. Our evalua-
tions show that RedPlane incurs negligible overhead and enables
end-to-end applications to rapidly recover from switch failures.

CCS Concepts
• Networks→ Programmable networks; In-network process-
ing; • Hardware→ Emerging technologies; • Computer sys-
tems organization→ Availability.
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1 Introduction
Today’s data center switches are no longer simple stateless packet
forwarders. They implement sophisticated network functions, such
as NATs, firewalls, and load balancers [6, 39, 55] and accelerate
distributed applications [45, 47, 67, 73, 78]. Cloud service providers
have even started deploying them in production networks [7].

Such stateful processing in switches leads to a new challenge: 
fault tolerance. Classic network designs followed the end-to-end
principle [66], keeping critical state only on the end hosts. This en-
abled a fate-sharing approach to reliability [27]; when switches are
stateless, recovering from their failure simply entails finding a new
communication path. Stateful in-switch applications [7] challenge
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this paradigm; e.g., the failure of a switch running a load balancer
may cause the loss of its forwarding state, breaking thousands of
active connections. While data center networks are engineered with
redundant network paths [34, 65, 71] to provide fault tolerance at
the routing layer, there are no capabilities for recovering in-switch
state after failure.

Thus, we need to reconsider fault tolerance for in-switch pro-
cessing – something previously done in ad hoc, application-specific
ways. Our goal in this paper is to ensure that, after a failure and
reroute, the same application state becomes available at the replace-
ment switch, without degrading performance and while remaining
transparent to end hosts.

Making switch state fault tolerant is uniquely challenging be-
cause of the scale and resource constraints involved. Techniques
like checkpointing and active replication, which have been applied
to software middleboxes [63, 70], are designed for server-based sys-
tems. These techniques rely on obtaining a consistent snapshot of
state and buffering output until state updates are durably recorded
to other servers. However, a switch’s high packet processing speed
(a few billion packets/second [13, 14, 19]) and its limited compute
and storage capabilities make it infeasible to translate these tech-
niques to the switch context.

In this paper, we introduce RedPlane,1 a fault-tolerant state store
for in-switch applications. RedPlane provides APIs for developers
to (re)write their stateful P4 programs and make them fault-tolerant.
This allows an application to retain consistent access to its state,
even if the switch it runs on fails or traffic is rerouted to an alter-
native switch. RedPlane achieves this through a data plane centric
replication mechanism that continuously replicates state updates
to an external state store implemented using DRAM on commodity
servers. Note that running entirely in the data plane channel is key
to keeping up with the switch’s full processing speed.

Realizing this high-level idea in practice entails several chal-
lenges. First, traditional notions of strict correctness with lineariz-
ability and exactly-once semantics for operations require reliable
communication and output buffering. However, this is infeasible
on the switch data plane due to its limited capabilities. Second, at
the traffic volumes the switch data plane needs to process, naïvely
requiring per-packet coordination with the server-based state store
imposes severe performance overheads. Last, routing decisions
when a switch fails could be unpredictable. Thus, we must be able
to transparently migrate the relevant state between two switches
regardless of the routing decisions.

We address these challenges with the following key ideas:
• Based on the requirements of in-switch applications, we define
two practical correctness models. First, based on our observa-
tion that network applications are already resilient to packet
loss, we define a strict consistency mode by explicitly adopting

1The name denotes a replicated data plane.
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the standard definition of linearizability [36], which permits
operations that do not complete while still providing strong con-
sistency. Second, for write-centric applications (e.g., monitoring
using sketches [28]) that can tolerate approximate results, we
propose a relaxed consistency mode that allows some state to
be lost after a failure, but bounds the inconsistency with lower
overheads.
• Instead of buffering packets using limited switch resources, we
use the network itself and state store’s memory as temporary
storage by piggybacking packet contents on coordination mes-
sages.
• To enable reliable state replication, we build a lightweight se-
quencing and retransmission protocol that ensures state updates
are processed in the correct order, without requiring complex
protocols (e.g., TCP) in the switch data plane.
• To avoid overheads due to frequent coordination with the state
store, we propose a lease-based state ownership protocol [33,
49, 57] to provide correctness without coordinating on every
state access and migrate ownership between different switches
as needed.
We design the RedPlane protocol that realizes our consistency

modes, prove its correctness, and confirm this using a TLA+ model
checker [18]. We implement a prototype of RedPlane in P4 [11]
and C++/Python, and show that different types of applications
can be fault tolerant using it. We evaluate it with various applica-
tions in our testbed consisting of two Tofino-based programmable
switches, four regular switches, and 10 servers. Our evaluation
results show that under failure-free operation, RedPlane has negli-
gible per-packet latency overhead for read-centric applications like
NAT, and less than 8 𝜇s overhead even for the worst case. When
a switch fails, RedPlane can recover end-to-end TCP throughput
within a second by accessing the correct state.

2 Background and Motivation
In-network processing has flourished in recent years, as a natural
convergence of the demand for sophisticated network functionality
from data center operators and the commercial availability of pro-
grammable switch platforms [8, 13, 14]. Programmable switches are
used for classic middlebox functionality [39, 55], monitoring [6, 35],
DDoS defense systems [76, 77] and accelerating other networked
systems [38, 45–47, 52, 67, 73, 78].

These applications are stateful; i.e., state on the switch deter-
mines how to process packets. In this paper, we focus primarily on
hard state applications, where a loss of state disrupts network or
application functionality.2 An example is an in-switch NAT, where
the key state is an address translation table. Losing this state would
make it impossible to forward packets for existing connections.
Network model. We consider a deployment model where pro-
grammable switches are installed into the network fabric such that
all traffic to be processed by an in-switch application traverses one
of the programmable switches. This could be achieved in several
different ways, depending on the network architecture. In a typical
data center architecture (Fig. 1), this could be achieved by using the

2Other applications maintain only soft state in the switch and provide their own failure
recovery mechanisms. These are not the focus of our work, though RedPlane could
perhaps help simplify their design or improve recovery performance.
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Figure 1: Impact of switch failures on in-switch NATs.

switches on all core or all aggregation-layer switches.3 All traffic
entering or leaving a cluster, for example, would traverse one of
these switches. Alternatively, an operator might deploy a cluster
of programmable switches as dedicated “NF accelerators”, explic-
itly routing traffic through them; this approach is similar to how
software load balancers [30, 60] are deployed today.
State partitioning. We assume that application state is partition-
able using some key derived from the packet header, and that each
packet’s processing uses only state from the associated partition.
In many cases, such as for the NAT example, the key will be the
IP 5-tuple, and, hence, we use “partition” and “flow” interchange-
ably. However, other applications may use different partitioning,
e.g., partitioning on VLAN ID to detect heavy-hitter flows for a
particular tenant.

We also assume that the network is configured to provide best-
effort affinity such that packets from the same partition usually
arrive at the same switch. Standard layer-3 routing protocols such
as Equal-Cost Multi-Path routing (ECMP) provide this property
when they are configured to use the partition key as their hash key.
Primer on programmable switches. Programmable switch ar-
chitectures used today, e.g., Intel Tofino [14], use a limited amount
of on-chip memory (e.g., SRAM and TCAM) to provide a variety
of stateful object abstractions, including tables, registers, meters,
and counters. Applications can use these to keep state across mul-
tiple packets, such as the address translation table in the NAT
example above. In the ingress and egress match-action pipeline,
objects are allocated in each stage and accessed by packets via
ALUs. These objects are also accessible by the switch control plane
through the ASIC-to-CPU PCIe channel which has a limited band-
width (𝑂(10 Gbps)) compared to the ASIC’s per-port bandwidth
(𝑂(100 Gbps)). In addition, the ASIC provides other built-in func-
tionality such as packet replication, recirculation, and mirroring
for more advanced packet processing.4

2.1 Impact of Switch Failures
Switches can fail, either by a switch failing entirely (a fail-stop
model), or by individual links losing their connectivity. Measure-
ment studies in production data centers have shown that such
switch failures are prevalent. For example, in Microsoft’s data cen-
ter, 29% of customer-impacting incidents are related to hardware
3In principle, RedPlane could be deployed on top-of-rack (ToR) switches, but it is
potentially less useful. If each rack has one ToR switch, and it fails, connectivity to the
servers in that rack is lost. RedPlane can restore the switch state onto a different rack,
but depending on the application that may not be useful. However, if there are two
ToR switches per rack, RedPlane would be useful.
4While we use Tofino-based programmable switches for our work, we believe our
design can be implemented on other programmable switch ASICs since hardware
capabilities leveraged in RedPlane’s switch data plane (e.g., packet mirroring) are
general features supported by most switch ASICs.
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State access Applications Impact of switch failure

Read-centric
NAT Connection broken
Stateful firewall Connection broken
Load balancer [55] Connection broken
SYN flood defense [77] Dropping valid packets

Write-centric Super-spreader detection [72] Inaccurate detection
Heavy-flow detection [53] Inaccurate detection

Mixed-read/write
SGW in EPC [69] Active session broken
In-network sequencer [46] Incorrect sequencing
Per-object routing [47, 78] Choosing wrong servers
In-network key-value store Losing key-value pairs

Table 1: Examples of stateful in-switch applications and im-
pact of switch failures.

failures including ASIC failure, fiber cuts, or power failures [50],
and in Facebook’s data center, 26% of incidents are related to switch
failures [54].

Switch failures can impact stateful applications in two ways. If a
switch fails entirely, all application state it held is lost. Beyond that,
a link failure or the failure of a different switch can impact many
paths in the network [51], causing traffic to be rerouted [22, 34, 43].
Traffic that previously traversed one switch might be routed to
a different one, where the appropriate state is unavailable. In the
absence of this state, application processing can fail. For example,
as illustrated in Fig. 1, lacking the proper translation table entries,
the NAT cannot forward packets for existing connections, breaking
open connections en masse. Indeed, this is a serious problem –
software-based stateful load balancers at cloud providers implement
complex failover mechanisms [30, 60].

Beyond the conventional NFs (e.g., NATs, load balancers, fire-
walls), there are several in-switch applications (shown in Table 1)
that exhibit complex state access patterns. For example, many ap-
plications that are designed to enforce QoS policies (e.g., rate limits)
employ streaming algorithms (e.g., sketching) to capture character-
istics of traffic such as heavy-hitters [53, 72]. Switch failures lead
them to make inaccurate decisions as the statistical data is lost.
Such applications update state (e.g., sketches) on every packet, so
we call them write-centric. In contrast, many conventional NFs and
DDoS defense systems (e.g., SYN proxy) [76, 77] are read-centric.

Another group of applications havemixed-read/write state access
patterns, typically with much less frequent updates than write-
centric applications. One example in this category is NFs in the
packet core for cellular networks (e.g., Evolved Packet Core (EPC)
for LTE) [17]. Packet core NFs such as a serving gateway (SGW)
route users’ data traffic from user devices to the Internet and vice
versa based on per-user states (e.g., forwarding state), which are
updated when the control plane receives signaling messages (e.g.,
device attached). To cope with the increasing volume of signaling
traffic [4, 10],5 there have been recent efforts to accelerate the
control plane functions by offloading them to the programmable
data plane [5, 9, 61, 69]. For example, a SGW running on a switch
maintains per-user tunnel endpoint IDs (TEIDs) to route packets,
and this state is updated by signaling messages and read by data
packets that are encapsulated with TEIDs. Thus, when a switch fails,
since the SGW loses the state, it cannot forward packets for users,
disrupting active connections. Affected users need to re-establish

5Despite the growth, it is expected that signaling traffic rate is still much lower than
that of data traffic (e.g., 5% of data traffic [56]).

connections after the failure [21], increasing the service latency.
Other applications that route requests in application-specific ways
(e.g., for databases [78] or key-value stores [47]) also fall into this
category since they require state updates on every write (but not
read) request.

2.2 Existing Approaches and Limitations
We now examine classical fault tolerance mechanisms [32, 58, 74]
and mechanisms tailored for network middleboxes [63, 70]. At a
high level, these approaches can be categorized into three classes:
(1) checkpoint-recovery, (2) rollback-recovery, and (3) state replica-
tion. All prior work targets server-based implementations. In what
follows, we discuss why natural adaptations of these approaches
to the switch environment fail to ensure correct behavior during
failures.

Checkpoint-recovery. Checkpointing approaches periodically
snapshot application state (e.g., an address translation table in NAT)
and commit it to stable storage (e.g., [63]).When a failure occurs, the
latest snapshot is populated on a backup node (i.e., an alternative
switch in our context). Fig. 2a illustrates a candidate implementation
on switches using an external controller to store snapshots via the
switch control plane. To achieve a consistent snapshot, data plane
execution must be paused and packets buffered during the snapshot
period. Limited data-to-control plane bandwidth in modern switch
architectures makes this impractical.

Rollback-recovery. This approach, previously used for software
middleboxes [70], logs every packet to stable storage and replays the
traffic logs on a new device after failure to reconstruct application
state. A natural implementation is sending every packet to the
switch control plane, which logs it to the controller (Fig. 2b). In
principle, this approach can guarantee correctness if every packet
is synchronously logged and replayed after a failure. However,
the mismatch between the data traffic rate (Tbps) and the data-to-
control plane bandwidth (Gbps) will result in many packets being
dropped and will, thus, be incorrect.

State replication among switch data planes. Consider a state
machine replication approach using chain replication [74], but ap-
plied to switch data planes (Fig. 2c). Packets are forwarded through
a sequence of switches, each of which updates its state and for-
wards the packet to the next switch in a chain. Only once the packet
has reached the tail of the chain is it forwarded on its way to its
destination. This is done entirely on the data plane, so it can func-
tion at high speed. This approach achieves correctness only if state
updates are not lost. However, the state updates are delivered over
an unreliable channel, and since the switch data plane cannot effec-
tively support reliable transport protocols (e.g., TCP) updates could
be lost or reordered, violating correctness. Also, using one switch
to replicate another switch’s state makes poor use of data plane-
accessible switch memory – the most costly and limited resource.
It also requires changes to the routing policy of the network since
a packet needs to be explicitly routed to a specific switch in the
chain depending on whether the packet updates state or not.

Takeaways. From the above discussion, we see two key takeaways.
First, approaches that rely on the switch control plane must con-
sider the mismatch between control and data plane speeds. Second,
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Figure 2: Highlighting why adapting existing approaches for fault tolerance fails for hardware switches.

while switch data-plane-only approaches can provide good per-
formance, they suffer three shortcomings: (a) incurring significant
switch resource overhead; (b) making it difficult to reason about
correctness due to unreliable communication channels between
switch data planes; and (c) they may additionally constrain routing
policies.

3 RedPlane Overview
Our goal is to design a fault tolerance solution that provides the
following four properties:
• Correctness: Switch failure should be transparent to applica-
tions: clients should not see state that would not be possible in
the absence of a failure.
• Performance: Under failure-free operation, overhead for per-
packet latency should be low (say, a few tens of 𝜇𝑠).
• Low resource overhead: It should not consume switches’ lim-
ited compute and storage resources excessively.
• Transparency to routing policies: That is, we must allow a
packet to update and/or read state regardless of the location of
a switch where the packet is routed.
To this end, we present RedPlane, which provides an abstraction

of fault-tolerant state storage for stateful in-switch applications.
RedPlane provides an illusion of “one big fault-tolerant switch” –
the behavior is indistinguishable from the same application running
on a single switch that never fails. To achieve this, RedPlane con-
tinuously replicates state updates which can be restored without
loss after a failure.

RedPlane takes a state replication approach with two defining
characteristics: (1) the switch’s state replication mechanism is im-
plemented entirely in the data plane, and (2) state storage is done
through an external state store, a reliable replicated service made
up of traditional servers. Property (1) means that the switch’s con-
trol plane is not required for state replication, avoiding the issues
with the checkpointing and rollback-recovery approaches of §2.2.
Property (2) means that the replicated state is stored in commodity
server DRAM, a relatively low cost storage medium compared to
switch data plane memory. This avoids the high resource overhead
of the state replication approach discussed in §2.2.

While the idea of using servers’ memory as an external store
is similar to recent work on TEA [42], it is important to note that
TEA does not tackle fault tolerance. It focuses on the problem of

App code

+ RedPlane
P4 API

Developer P4 Compiler

Replicated state 
on memory

Reliable state store
Pipeline stages 

(RedPlane-enabled App)
Application states

Binary

Switch 
ASICs

RedPlane
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Figure 3: RedPlane overview highlighting extensions to tra-
ditional workflows for in-switch applications

resource augmentation to enable a switch to retrieve state stored in
memory of servers. Furthermore, that design can only utilize servers
directly attached to a top-of-rack switch. As such, their design does
not tackle fault tolerance or provide provable correctness in the
scenarios when multiple switches can access the store.

RedPlane provides a set of APIs (Fig. 3) implemented in P4 [11], a
language to specify data plane programs on programmable switches,
to allow developers to easily integrate RedPlane with their stateful
P4 applications. Once developers (re)write their applications using
RedPlane APIs, the P4 compiler generates a binary of RedPlane-
enabled applications loaded to the switch, which continuously repli-
cates updates to the state store through the data plane.
Scope and limitations: In this work, our focus is on enabling fault
tolerance for stateful applications with partitionable hard state,
where a loss of state disrupts network or application functional-
ity, shown in Table 1. Applications only with non-partitionable
state (e.g., global counter) are beyond the scope of this work. Also,
we assume that global state in an application (e.g., a port pool in
NAT) is sharded across and managed by state store servers. Other
applications that need soft-state (e.g., in-network caches or ML
accelerators) do not require fault tolerance, but may benefit from
RedPlane.

3.1 Challenges
While replicating state updates through the data plane to an external
state store seems appealing, realizing this idea in practice presents
some challenges:
C-1. Providing correct replication in the data plane while
tolerating unreliable communication. Traditional server-based
replicated systems aim to provide strict correctness by ensuring not
just linearizability but also that each operation is executed exactly
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once even in the presence of dropped or retransmitted messages [44,
49, 57]. To do so, they build on reliable communication channels
like TCP. However, the switch data plane cannot support reliable
communication, nor can it buffer significant amounts of traffic.
C-2. Handling high traffic volume. Switch data plane operates at
immense traffic volumes (up to a few billion packets per second [13,
19, 23]), in contrast to server-based systems handling a few million.
If each packet that reads or updates state requires interacting with
a server-based state store, the servers’ capacity will rapidly be
exceeded. It will also incur significant performance overhead.
C-3. Being transparent to routing policies. A switch failure,
recovery, or network routing change could cause traffic flows orig-
inally processed at a switch S1 to be routed to a different switch
S2. However, since the routing decisions may be unpredictable, we
cannot make assumptions on S2 or presuppose what backup routes
will be taken. That is, we must be able to transparently migrate
the relevant state from S1 to S2 irrespective of the location of S2.
For instance, we need to make the NAT table entry available when
packets for a particular connection are processed by a different
instance.

3.2 Key Ideas
To tackle these challenges, we build on four key ideas:
I-1. Practical correctness for switch state (§4).We define two
correctness models based on the requirements of in-switch applica-
tions. The first, a strict consistency mode, is based on linearizabil-
ity [36]. Because we observe that network applications are already
designed to tolerate packet loss, we explicitly adopt the standard
definition of linearizability, which permits operations that do not
complete while still providing strong consistency for those that do.
Second, since many write-centric applications (e.g., monitoring us-
ing sketches [28]) accept approximate results, we propose a relaxed
consistency mode that allows some state to be lost after a failure,
but bounds the inconsistency.
I-2. Piggybacking output packets (§5.1). Instead of buffering
output packets using limited switch resources, we use the network
itself as temporary storage by piggybacking packet contents on
coordination messages.
I-3. Lightweight sequencing and retransmission (§5.2).To cope
with the unreliable communication channel between the switch
data plane and the state store with low resource overhead, we
employ a sequencingmechanism for protocol messages and devise a
lightweight switch-side retransmission mechanism by repurposing
the switch ASIC’s packet mirroring feature.
I-4. Lease-based state ownership (§5.3). To reduce the frequency
with which the switch must coordinate with the state store, es-
pecially for applications with read-centric and mixed-read/write
workloads, we adopt a lease-based mechanism inspired by prior
work [33, 49, 57]. This allows us to avoid coordination with the state
store for packets which need to read but do not modify state. At the
same time, we ensure that all state updates are durably recorded
before any of their effects are externalized, guaranteeing lineariz-
ability. This mechanism also serves as the means by which state is
migrated between switches to support the transparency.

Taken together, these high-level ideas address the aforemen-
tioned challenges. First, the linearizability-based consistency model

coupled with the piggybacking and lightweight sequencing and
retransmission mechanism allows to replicate state reliably and
correctly (C-1). Second, the relaxed consistency and lease-based
state ownership help cope with high traffic volume (C-2). Lastly,
the lease-based state ownership makes RedPlane transparent to
routing policies (C-3).

4 Correctness Model
RedPlane provides two levels of consistency, which applications can
choose between based on their requirements. A linearizable mode
provides strict guarantees, making the system indistinguishable
from a single fault-tolerant switch. Because this has a high overhead
for write-centric applications due to frequent coordination with
the state store, RedPlane also offers a bounded-inconsistency mode
that permits some state updates to be lost on switch failure, but
guarantees a consistent view of switch state.

4.1 Preliminaries
By default, RedPlane provides linearizability [36], a correctness
condition for concurrent systems. We model a stateful in-switch
program as a state machine, where the output and next state are
determined entirely by the input and current state:
Definition 1 (Stateful in-switch program). A stateful program
𝑃 is defined by a transition function (𝐼 , 𝑆) → (𝑂∗, 𝑆 ′) that takes
an input packet and the current state, and produces zero, one, or
multiple output packets, along with a new state.
To simplify the definitions below, we will assume that each input
packet 𝑝 produces exactly one output packet 𝑃 (𝑝); it is straightfor-
ward to extend them to the zero- or many-output case. This implies
that the program’s behavior is determined entirely by the sequence
of input packets, and in particular that it is deterministic and that
packets are processed atomically. Although switch architectures are
pipelined designs that process multiple packets concurrently [26],
their compilers assign state to pipeline stages in a way that makes
packet processing appear atomic [24].

The gold standard for replicated state machine semantics is
single-system linearizability [36]. That is, that the observed execu-
tion matches a sequential execution of the program that respects
the order of non-overlapping operations. To adapt linearizability for
in-switch programs, we first redefine a history in terms of packet
processing:
Definition 2 (History). A history is an ordered sequence of events.
These can be either input events 𝐼𝑝 , in which a packet 𝑝 is received at
a RedPlane switch, or output events𝑂𝑝 in which the corresponding
output packet is output by a RedPlane switch.

Note that it is possible for there to be input events 𝐼𝑝 without the
corresponding output 𝑂𝑝 , if the processing of 𝑝 is still in process
or due to a failure. We discuss this in depth next.

4.2 Linearizable mode
Definition 3 (Linearizability for a stateful in-switch program).
A history 𝐻 is a linearizable execution of a program 𝑃 if there is
a reordering 𝑆 of the input events in 𝐻 such that (1) the value for
each output event 𝑂𝑝 that exists in 𝐻 is given by running 𝑃 on the
input events in 𝑆 in sequence, and (2) if 𝑂𝑥 precedes 𝐼𝑦 in 𝐻 then
𝐼𝑥 precedes 𝐼𝑦 in 𝑆 .
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Here, 𝑆 is the apparent sequential order of execution.
Linearizability is fundamentally a safety property, not a liveness

one: it specifies what output values are acceptable, but does not
guarantee that all operations complete. It is possible for a packet to
be received and (1) update switch state, but produce no output, or
(2) neither update switch state nor produce any output. Definition 3
reflects this: a packet with an input event but no output event can
still appear in the sequential order 𝑆 . If it precedes the processing
of other packets, then they see the effects of its state update. If it
appears at the end of 𝑆 , it has no visible effect on system state.

While these anomalies comport with the definition of lineariz-
ability, most replicated systems aim to provide a stronger property:
that every operation is executed exactly once and returns its result
to the client. Ensuring this requires several protocol-level mecha-
nisms: typically, clients retry requests that do not receive a response,
and replicas keep state to detect duplicate requests and resend the
responses without executing them twice [44, 49, 57]. As we see
(§5.2), these techniques are not feasible in our environment.

Accordingly, RedPlane takes a different approach: it explicitly
permits these two types of anomalies. While this may seem surpris-
ing, it matches the semantics of modern networks. The two cases
correspond to a packet being lost (1) between the RedPlane switch
and its destination or (2) between the source and the RedPlane
switch, respectively. Network applications must already tolerate
lossy networks, so they are resilient to such losses.

Relaxing the definition of correctness enables a tractable im-
plementation. By not requiring the system to achieve complete
reliability, our protocol may drop packets during failover, or if
messages between a switch and the state store are lost. In these
scenarios, an input packet or its output may be lost. Of course,
dropping too many packets is undesirable for performance reasons;
such loss events are rare.

4.3 Per-flow Linearizability
In most in-switch programs, some or all state is associated with a
particular flow – a subset of traffic identified by a unique key, e.g.,
an IP 5-tuple, VLAN ID, or an application-specific object ID. For
example, each translation table entry in a NAT is tied to a specific
flow based on an IP 5-tuple. For many applications, per-flow state is
the only state that needs to be consistent or fault tolerant – either
because there is no global state, or because global state can tolerate
weaker consistency, e.g., traffic statistic counters that need not be
precise. RedPlane generally provides consistency for per-flow state
(consistency for global state is optional):

Definition 4 (Per-flow linearizability). A history 𝐻 is per-flow
linearizable if, for each flow 𝑓 , the subhistory 𝐻𝑓 for the packets in
flow 𝑓 is linearizable.

As long as programs use only per-flow state, per-flow lineariz-
ability is the same as global linearizability, because linearizability
is a local (i.e., composable) property [36]. The benefit of operating
on a per-flow level is that it means synchronization between states
associated with different flows are not required. As we show in §5,
this allows RedPlane to distribute execution of a program across
multiple switches: each has the state associated with certain flows,
and can process packets for those flows. This matches the waymany
applications are deployed in practice, e.g., a NAT will be deployed
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Figure 4: RedPlane state replication protocol packet format.

to a cluster of switches, using ECMP for load balancing. Because
this load balancing is done on a per-flow granularity, each switch
is responsible for performing translation for a subset of flows, and
does not need access to the translation table for the other flows.

4.4 Bounded-inconsistency mode
RedPlane’s linearizable mode uses a synchronous replication pro-
tocol (§5.1), which can induce high overhead for write-centric ap-
plications. However, we observe that many write-centric applica-
tions in programmable switches operate in contexts where approx-
imate results are acceptable, e.g., monitoring using sketches [28] or
Bloomfilters [25]. For these applications, RedPlane offers a bounded-
inconsistency mode that has lower overhead.

In this mode, RedPlane takes periodic snapshots of data plane
state and replicates them asynchronously. This means that upon
switch failure, the most recent state updates can be lost. However,
RedPlane ensures that the system recovers to a consistent state from
within a time interval 𝜖 . RedPlane’s consistent snapshot mechanism
ensures that the state after recovery reflects an actual state of the
system, which simplifies reasoning about the correctness of com-
plex data structures.6 In §5.4, we describe how we address key
challenges in realizing this mode in RedPlane.

5 RedPlane Design
Now, we describe the RedPlane protocol that realizes our lineariz-
able and bounded-inconsistency modes. We begin with an overview
of the protocol and explain how we address practical challenges.

5.1 Basic Design
As shown in Fig. 3, RedPlane consists of (1) an external state store
built on commodity servers and (2) a RedPlane-enabled application
running on the switch data plane. In this section, we describe how
the components work together via the state replication protocol.

For clarity of exposition, we start with simplifying assumptions:
there is no packet loss or reordering between switches and the state
store, switches do not fail while messages are in transit, and packets
for a flow are routed to only one switch at a time. We revisit these
assumptions in §5.2 and §5.3.

5.1.1 External state store: The external state store is an in-memory
key-value storage system. We partition it across multiple shards
by flow – identified by an IP 5-tuple or other key. Each state store
shard can be replicated using conventional mechanisms and we
do not seek to innovate here as many existing key-value stores
meet our needs (e.g., [16, 48, 59]). Specifically, our prototype is a
simple in-memory storage server implemented in C++ that uses
chain replication [74] with a group size of 3.

6Although the bounded-inconsistency mode may affect properties of some approx-
imate data structures (e.g., no false negatives in Bloom filters), since it bounds the
inconsistency within 𝜖 , developers or network operators can easily reason about the
potential inconsistency.
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Figure 5: Basic workflow of RedPlane state replication proto-
col. “Repl” indicates a state replication request. pkt 𝑓𝑛 indicates
𝑛𝑡ℎ packet of a flow 𝑓 .

5.1.2 Basic replication protocol: A RedPlane-enabled application
replicates state updates to the state store by exchanging protocol
messages formatted as shown in Fig. 4. It uses standard UDP and
IP headers to address messages to the state store or the switch
using their respective IP addresses. The RedPlane header consists
of a sequence number, a message type, and a flow key. Depending
on the message type, it can also include flow state and an output
packet. We will discuss these fields shortly. Note that we assign an
IP address to each RedPlane switch and use it for routing requests
and response packets between state store servers and RedPlane
switches. This works with general L3 routing protocols including
ECMP and BGP.

As an illustrative example to help understand the protocol, we
consider a per-flow counter application shown in Fig. 5, This appli-
cation updates or reads the state for each packet. In the example,
there are two switches and a state store. We have multiple packets
in each flow 𝑓 , with the 𝑛th packet denoted as pkt 𝑓𝑛 . This example
illustrates a case where the Switch-1 initially handles 𝑓 1, but after
its failure, the flow is rerouted to the Switch-2.

State initialization ormigration (Step 1 or 4 in Fig. 5).When
the application receives a packet that belongs to a flow it has never
seen before (e.g., pkt 𝑓 11 ), it needs to send a state initialization request.
It identifies the corresponding state store server by hashing the
flow key (e.g., IP 5-tuple), and looking up the corresponding server
IP and UDP port from a preconfigured table.

There are two possible cases: (1) the flow is new and so has no
state, or (2) the flow state previously existed on a failed switch,
and a packets for that flow are now being routed to a switch on
an alternative path (i.e., failover). In case (1), upon receiving the
request, the state store initializes its storage for the state and sends
a response back to the switch (Step 1 ). In case (2), since the state
store already has the flow state, it sends a response containing the
latest state (Step 4 ).

Upon receiving the response, the application installs the returned
state into the corresponding switch memory. For stateful memory
registers, this can be done entirely in the data plane. On the Tofino
architecture, updates tomatch tables or certain other resources need
to be done through the switch control plane. In this case, RedPlane
routes the processing through the control plane. This can introduce
additional latency (we measure this in §7.1). However, many in-
switch applications already require a control plane operation on a
new flow (e.g., to install a new translation mapping in a NAT), in
which case the added overhead is minimal.
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(b) Request sequencing serializes replication requests.
Figure 6: Serializing out-of-order requests with sequencing.
Counter values (cnt) in red and blue indicate the state on the
switch and the state store, respectively.

Reading or updating state (Step 2 or 3 in Fig. 5). Once the
state has been initialized, the application can read the state value
(i.e., the counter in our example) directly (Step 3 ). When it up-
dates the state (i.e., the counter value), RedPlane sends a replication
request with the new value to the state store. This message is gen-
erated entirely through the data plane. The state store applies the
update, and sends a replication reply message (Step 2 ).
Piggybacking output packets.When the application updates the
state, RedPlane should not allow an output packet to be released
until the state has been recorded at the state store – otherwise, the
update could be lost during a switch failure, violating correctness.
This requires the output packet to be buffered until the replication
reply is received.

Unfortunately, the switch data plane does not have sufficient
memory to buffer packets in this way (and various other constraints
on how memory can be accessed make it unsuitable for storing
complete packet contents). RedPlane instead piggybacks the packet
onto its replication request message, and the state store returns it
in its reply. When the reply is received, RedPlane decapsulates and
releases the packet. In effect, this uses the network and the memory
on the state store as a form of delay line memory – trading off
network bandwidth, which is plentiful on a switch, for data plane
memory, which is scarce.

Note that it is possible to receive packets that read state when
there are in-flight replication requests for the state. In this case, the
packets are buffered in the same way through the network (with a
special RedPlane request type) until a switch receives a response
for the latest replication request.

While our basic design provides correctness under the simplified
assumptions, we find that in more realistic environments, it may not
be able to guarantee correct behavior. In the following sections, we
describe potential challenges, and how we extend the basic design
to address them.

5.2 Sequencing and Retransmission
To guarantee correctness, replication requests must be successfully
delivered and replicated in order at the state store. For example,
the replication request (Step 2 in Fig. 5) must be delivered in
order. However, successful in-order delivery is not guaranteed in a
best-effort network between switches and the state store.

Fig. 6a illustrates why such unreliability in the network can be
problematic. We use the same per-flow counter as an example. Each
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time the counter is incremented, RedPlane sends the new value to
the state store. If the state store just processes updates in the order
they are received, a reordering could cause a later counter value
to be replaced with an earlier one. Request loss can cause a similar
issue.

A traditional replication system, like chain replication, might
address this by relying on a reliable transport protocol like TCP.
Unfortunately, it is not practical to implement a full TCP stack on
the switch data plane – if it is possible at all, it would excessively
consume data plane resources.

Our approach. Instead of implementing a full-fledged reliable
transport on a switch data plane, we choose to build a simpler
UDP-based transport with mechanisms that deal with possible
packet reordering and loss. First, to handle out-of-order state repli-
cation request messages, we employ a mechanism called request
sequencing [46], which assigns a per-flow monotonically increasing
sequence number to each request message. The state store uses this
sequence number to avoid applying updates out of order (Fig. 6b).

Second, to cope with lost replication requests or responses, we
develop a mechanism for request buffering. RedPlane buffers repli-
cation requests and retransmits them if it does not receive a reply
before a timeout. We implement this by repurposing the egress-to-
egress packet mirroring capability of switch ASICs.When RedPlane
sends a replication request, it mirrors a copy with the current times-
tamp as metadata. When the mirrored request enters the egress
pipeline and it has not been acknowledged by a response with the
same or a higher sequence number, RedPlane checks whether the
request has timed out by comparing the current timestamp to the
timestamp in its metadata. If it has timed out, it resends the request
to the state store. Otherwise, it mirrors the request again without
ending the request to the state store.

As discussed previously, buffering a full packet payload is chal-
lenging on a switch due to memory limitations. Instead, RedPlane
buffers only state updates (i.e., the RedPlane header) – not the pig-
gybacked output packet by truncating the packet. This reduces the
amount of data that needs to be mirrored. A consequence of this is
that if a replication request or its response is dropped, the output
packet will be lost. This is permitted by our linearizability-based
correctness model: it is indistinguishable from the output packet
being sent and dropped in the network. The state updates must be
retransmitted, however, because subsequent packets processed by
the switch may see the new version, and thus it must be durably
recorded. We measure the overhead of request buffering in §7.4.

5.3 Lease-based State Ownership
What if multiple switches attempt to process packets for a particular
flow at the same time, especially during failover or recovery? The
protocol in §5.2 will not be correct in this case, when there are
concurrent accesses to the same state. Fig. 7a illustrates why. After
Switch-1 has a link failure (but does not lose its state, which is
𝑐𝑛𝑡=2), packets are routed to an alternate, Switch-2. If Switch-1
recovers, a packet may read its old state, a violation of linearizability.

Our approach. RedPlane ensures that only one switch can process
packets for a given flow at a time using leases, a classic mechanism
for managing cached data in file systems [33] and replicated sys-
tems [49, 57]. Fig. 7b illustrates this. If a packet wants to access
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Figure 7: Consistent state access for multiple switches.

state, but the state is not available at the switch, it first requests a
lease for the flow. The state store grants a lease for a specific time
period (1 second in our prototype) only if no other switch holds an
active lease on the same flow state. The lease time is renewed each
time the switch sends a replication request for that flow; switches
that frequently read but infrequently update state can send explicit
lease renewal requests. Our prototype does so every 0.5 seconds.

5.4 Periodic Snapshot Replication
As described in §4, RedPlane offers bounded-inconsistency mode
for write-centric applications that permit approximate results, e.g.,
monitoring using sketches [72] or Bloom filters [76]. In this section,
we describe how we realize it in the switch data plane.

For such applications, RedPlane replicates snapshots of state
asynchronously and periodically. Every 𝑇𝑠𝑛𝑎𝑝 seconds, a snapshot
of the current state is sent to the state store, while output packets
are released without waiting for replication to complete.

However, realizing this approach entirely in the data plane is
challenging. While data structures often consist of multiple entries
(e.g., slots in sketches), the switch is architected, and the P4 language
is designed, to allow access to a single entry per register array per
packet. Also, building hardware that could atomically copy entire
register arrays would be costly.

To address this challenge, we employ a lazy snapshotting ap-
proach. We maintain two copies of the data structure that are lazily
synchronized with each other. These are interleaved in the switch’s
register arrays so that each array index contains two entries, one
from each copy. Two metadata registers are used to indicate which
entry at each index is the active copy. The first, a 1-bit flag, is tog-
gled when a snapshot is taken. The second, a 1-bit register array,
represents whether that index has been updated since the current
snapshot started.

To take a snapshot, we flip the flag and read values from the
now-inactive copy. Meanwhile, when packets arrive and update
the array, one of two operations occur. The first packet to update
an index synchronizes the two copies and then updates the active
copy. Later packets simply update the active copy. This allows us to
take a consistent snapshot of the entire structure while incoming
packets continue to update it. Additional snapshots must wait for
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the current one to complete. We describe the pseudocode of our
mechanism in Appendix A.

Replication is achieved using the switch ASIC’s packet generator.
We configure it to generate a batch of packets every 𝑇𝑠𝑛𝑎𝑝 seconds.
To replicate a data structure with 𝑛 entries, we generate a batch of
𝑛 packets, each with a unique ID 𝑝𝑖 . The ID in each packet is used
to address the 𝑖th entry in the data structure and copy its value into
a RedPlane replication protocol header. Note that while RedPlane
asynchronously replicates snapshots, it still guarantees successful
replication with its sequencing and retransmission mechanisms.

5.5 Protocol Correctness
RedPlane’s replication protocol provides per-flow linearizability
defined in §4. Due to space constraints, we give only a brief sketch
of the reasoning here. The lease protocol ensures that at most one
switch is executing a program for a particular flow at a time. The
sequencing, retransmission, and buffering protocol ensure that an
output packet is never sent unless the corresponding state update
has been recorded and acknowledged by the state store.

During non-failure periods, RedPlane provides per-flow lineariz-
ability because the single switch processing packets for a flow
operates linearizably, but some output packets may be lost (due
to dropped replication traffic with piggybacked messages). After a
failover, the new switch receives a state version at least as new as
the most recent output packet from the old switch. This satisfies
the linearizability requirement that any packet sent after these out-
put packets were observed follow it in the apparent serial order of
execution. We also wrote a TLA+ specification of the linearizable
mode to model-check the above property (Appendix C).

Our periodic snapshot replication guarantees that the system re-
covers to a consistent state fromwithin a time bound 𝜖 (i.e., bounded
inconsistency) by tracking the time since the last successful repli-
cation; if the time bound is exceeded, an application-specific action
may be taken (e.g., dropping further packets or treating the switch
as failed).

6 Implementation
Our prototype implementation is available in our repository [20].

Data plane.We implement RedPlane’s data plane components in
P4-16 [11] (≈1192 lines of code) and expose them as a library of P4
control blocks [11, §13], which form the RedPlane APIs that devel-
opers can use to make application state fault tolerant. We compile
RedPlane-enabled applications to the Intel Tofino ASIC [14] with P4
Studio 9.1.1 [12]. We implement key functions such as lease request
generation, lease management, sequence number generation, and
request timeout management, using a series of match-action ta-
bles and register arrays. We evaluate the additional resource usage
in §7.4. As mentioned in §5.2, we implement request buffering via
the mirroring and truncation capabilities of the switch ASIC, which
allows us to buffer only the replication protocol data and discard
the original payload. We implement a basic sketch that supports
lazy snapshotting; developers can modify it to implement similar
data structures such as Bloom filters.

Control plane. We implement the switch control plane in Python
and C++. Its main function is to initialize and migrate (if available)

state for the data plane by processing corresponding responses
forwarded by the data plane component.

State Store. Our contribution is in the fault tolerance protocol
design and switch components. As such, our state store prototype
is built based on readily available libraries and simple implemen-
tations. We implement RedPlane’s state store in C++ for Linux
servers. It uses Mellanox’s kernel-bypass raw packet interface [3]
for optimized I/O performance. To ensure reliability in the pres-
ence of server failures, we implement chain replication [74] using
a group of 3 servers located in different racks.

Applications. To demonstrate the applicability of RedPlane, we im-
plement various applications in P4 described below. The simplified
P4 code for NAT is available in Appendix B.
(1) NAT: The NAT implementation uses RedPlane to implement a
fault-tolerant per-5-tuple address translation table and available
port pool. Since the port pool is a shared by different flows, it is
sharded across state store servers and managed by them. The state
is updated when a TCP connection is established from an internal
network.
(2) Firewall: The stateful firewall adds fault-tolerance to a per-5-
tuple TCP connection state table using RedPlane. Its state is updated
when a TCP connection is established from an internal network.
(3) Load balancer: The load balancer maintains a per-5-tuple server
mapping table; we make it fault-tolerant using RedPlane. It also
uses a server IP pool, which is shared state. When a new TCP
connection is established from an external network, the state is
updated.
(4) EPC-SGW: We also implement a simplified serving gateway
(SGW) used in cellular networks, a mixed-read/write application. It
maintains per-user tunnel endpoint ID state. The state is updated
by signaling messages and read by data packets.
(5) Heavy-hitter (HH) detection: We implement a heavy-hitter detec-
tor using count-min sketches [28] as an example of write-centric
applications; there are 3 sketches, each consisting of 64×32-bit slots
indexed by a hash of the IP 5-tuple. We implement separate sketches
per VLAN ID, assuming that the network operator wants to enforce
different policies for each cloud tenant. Since sketches are an ap-
proximate data structure which can be replicated asynchronously,
we use periodic snapshot replication.
(6) Per-flow counter: To demonstrate RedPlane’s worst-case perfor-
mance, this application counts packets forwarded for each IP 5-tuple.
State is updated for every packet and synchronous replication must
be used.

7 Evaluation
We evaluate RedPlane on a testbed consisting of six commodity
switches (including two programmable ones) and servers (see Ap-
pendix D) using both real data center network packet traces and
synthetic packet traces. Our key findings are:
• In failure-free operation, RedPlane adds no per-packet latency
overhead for applications that are read-centric or replicate state
asynchronously. For write-centric applications in linearizable
mode, RedPlane incurs 8 𝜇𝑠 per-packet overhead (§7.1).
• In failure-free operation, the throughput of read-centric applica-
tions is not degraded. Forwrite-centric applications, the through-
put is bottlenecked by state store performance in linearizable
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Figure 8: End-to-end RTT when RedPlane-NAT processes
packets vs. other approaches.

mode, but periodic snapshot replication reduces the overhead.
Similarly, RedPlane incurs almost no bandwidth overhead for
read-centric applications and small overhead for write-centric
in bounded-inconsistency mode even at scale (§7.2).
• After a switch failure, RedPlane-enabled applications access
their correct state and recover end-to-end TCP throughput
within a second (§7.3).
• RedPlane provides these benefits with little resource overhead
as it consumes <14% of ASIC resources (§7.4).

Testbed setup. We build a three-layer network testbed (shown in
Appendix D). The aggregation layer has two 64-port Arista 7170
Tofino-based programmable switches [23] running stateful applica-
tions written in P4. The core and ToR switches run 5-tuple-based
ECMP routing to route packets to end hosts even when one aggre-
gation switch fails. Each ToR switch has two servers connected,
and four additional servers attached to the core switch emulate
hosts outside the datacenter. The state store runs on one server in
each rack. All servers are equipped with an Intel Xeon Silver 4114
CPU (40 logical cores), 48 GB DRAM, and a 100 Gbps Mellanox
ConnectX-5 NIC, running Ubuntu 18.04 (kernel version 4.15.0). We
repeat each experiment 100 times unless otherwise noted.

7.1 Latency in Normal Operation
First, we evaluate the per-packet latency overhead introduced by
RedPlane under failure-free operation for the 5 applications in §6.
To measure the processing latency, we have each application send
packets back to a sender node and track the RTT of each packet. We
replay publicly available packet traces from a real data center and
enterprise network [1, 2] to generate 100,000 packets and measure
the processing latency of each packet. The packet sizes vary (64–
1500 bytes) in the real traces. To evaluate EPC-SGW, we inject a
signaling packet for every 17 data packets, following statistics used
in previous studies [56, 62].
Overhead of RedPlane. As an exemplar application, we evaluate
the per-packet latency for a NAT in RedPlane7 and compare it
with baseline implementations: (1) NAT written in P4 without fault-
tolerance (Switch-NAT), (2) NATwritten in P4 with controller based
fault-tolerance (Switch-NAT w/ an external controller)8 (3) NAT
implemented on a CPU server without fault-tolerance (Server-NAT),

7We choose NAT to compare results with those reported in prior work [70].
8We implement a simple external controller to emulate SDN controller-based ap-
proaches (e.g., Morpheus [68] and Ravana [40]), which communicates with the switch
control plane via a 1 Gbps management channel.
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Figure 9: End-to-end RTT for RedPlane-enabled applications.
All applications have chain replication enabled for the state
store. For Sync-Counter, we also show its overhead without
chain replication.

(4) NAT implemented on a server with fault-tolerance (FT Server-
NAT), and (5) FTMB-NAT which uses rollback-recovery for server-
based middleboxes [70].9 For switch-NAT w/ controller, RedPlane-
NAT, and server-NAT, we enable chain replication for the controller,
state store, and NAT instances, respectively.

Fig. 8 shows the CDF of the per-packet latency distribution. Com-
pared to Switch-NAT, which is expected to have the lowest latency,
RedPlane-NAT shows the same 50th and 90th percentile latency
(7 𝜇𝑠 and 8 𝜇𝑠 , respectively), meaning that there is no overhead.
This is because for NATs, packets except for the first packet of each
flow only require state (i.e., address translation table) to be read.
Both Switch-NAT and RedPlane-NAT show a high 99th percentile
latency (110 𝜇𝑠 and 142 𝜇𝑠 , respectively), mainly due to the overhead
introduced by our control plane implementation; in Switch-NAT,
the first packet of every flow is forwarded to the switch control
plane to create and insert a new entry to the translation table.
RedPlane-NAT has additional overhead since it needs to request a
lease from the state store before updating state. Switch-NAT with
the external controller incurs higher 99th percentile latency (185 𝜇𝑠)
due to the communication overhead between the switch control
plane and the controller and between controller instances (for chain
replication) over the slower management network. Server-based
versions (FT Server-NAT and FTMB-NAT) have 7–14× higher me-
dian latency compared to the switch-based approaches, as packets
need to traverse additional hops in the network and they have
inherent performance limitations.
Impact on different applications. Next, we evaluate the per-
packet processing latency overhead of different RedPlane-enabled
applications. As shown in Fig. 9, RedPlane-enabled NAT, firewall,
load balancer, EPC-SGW, and heavy-hitter (HH) detection, all have
the same 8 𝜇𝑠 median latency, identical to that without fault-tolerance.
The NAT, firewall, and load balancer are read-centric and update
state onlywhen a newflow is created; EPC-SGW ismixed-read/write,
and updates state on signaling packets whose frequency is 5% of
data packets. HH detection, although it is write-centric, performs
periodic state replication asynchronously, so it does not affect the
latency. On the other hand, since Sync-Counter updates state and
replicates updates synchronously for every packet, it adds an addi-
tional latency of 20 𝜇𝑠 to every packet. 12 𝜇𝑠 of this overhead is due

9We use the latency reported in the original FTMB paper [70] since we were not able
to get its full implementation.

232



RedPlane: Enabling Fault-Tolerant Stateful In-Switch Applications SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

NAT
Firewall

Load balancer

EPC-SGW

HH-detector

Sync-Counter

0

50

100

B
W

co
n

su
m

p
ti

o
n

(%
)

99.8 99.9 99.9 87.2 99.1
48.8

25.6
25.6

Original packets RedPlane reqs. RedPlane resps.

Figure 10: RedPlane replication bandwidth overhead.
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Figure 11: Impact of the frequency of snapshotting on
RedPlane-enabled HH-detector.

to the 3-way chain replication used to tolerate state store server
failures.

7.2 Bandwidth Overheads
To evaluate network bandwidth overheads, we inject 64-byte pack-
ets from three traffic generation servers at≈207.6 Mpps10 which is
the maximum rate that our traffic generator can achieve.
Additional bandwidth consumed. In this experiment, we in-
strument each application to count the number of bytes it sends
and receives, including both original packets and protocol message
packets. Fig. 10 shows the ratio of bandwidth used for RedPlane
messages to the total traffic. For read-centric applications including
NAT, firewall, load balancer, we see that there is almost no band-
width overhead since RedPlane generates protocol messages only
for the first packet of each flow. For EPC-SGW, RedPlane incurs
12.8% overhead since it generates protocol messages for signaling
packets, and some of data packets are buffered through the network
as described in §5.1. For HH-detector, which asynchronously repli-
cates a snapshot of state for every 1 ms, RedPlane incurs negligible
overhead. We also measure the absolute bandwidth overhead for
different snapshot frequencies and number of sketches as shown
in Fig. 11. For a 1 ms period, it consumes 34.16 Mbps (13.8%). Even
with 5 sketches, this is lower than the bandwidth overhead for Sync-
Counter (51.2%) because in the latter case RedPlane requests and
responses contain both headers and original payload. This result
implies that in an extreme case where an application replicates state
updates synchronously for every packet, achieving fault-tolerance
is expensive. We also analyze the bandwidth overhead at scale (i.e., a
topology with more RedPlane switches) for all 6 applications using
our analytical model-based simulation, and the result is consistent
with Fig. 10 in terms of the percentage overhead.
Throughput impact on applications. In this experiment, we
measure the throughput of RedPlane-enabled applications and com-
pare it with the same applications without fault tolerance. We
send 64-byte packets from three servers, one from each rack, to
10Each server generates packets at ≈69.2 Mpps.
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Figure 13: Impact of update ratio on data plane throughput
of the RedPlane-enabled key-value store.

one of servers attached to the core switch at ≈207.6 Mpps. In our
testbed, the link between an aggregation and a core switch be-
comes the bottleneck, and we observe that the maximum forward-
ing rate the aggregation switch can achieve is around 122.5 Mpps.
Fig. 12 shows the median throughput of each application with
and without RedPlane. Obviously, applications achieve the maxi-
mum throughput without RedPlane. With RedPlane, read-centric
(NAT, firewall, and load balancer) applications and applications that
replicate state updates asynchronously (HH-detector) can achieve
the same throughput as their non fault-tolerant counterparts. The
RedPlane-enabled EPC-SGW achieves a slightly lower through-
put than that of its counterpart, mainly due to some data packets
buffered through the network during the replication. The through-
put of Sync-Counter becomes nearly half that of its counterpart:
we find that it is bottlenecked by the performance of the state store.
This suggests that applying a strict consistency mode degrades the
throughput of write-centric applications as they are also affected
by the performance of the state store.
Varying update ratios. While most of existing in-switch appli-
cations are read-centric or perform asynchronous replication, in-
curring little overhead, it is important to understand the maximum
throughput of applications characterized by different read/write
(i.e., update) ratios. For this experiment, we write a simple in-switch
key-value store in P4 with RedPlane and generate packets consist-
ing of custom header fields that indicate an operation (read or
update), a key, and a value (for updates). We use the same setup as
the previous experiment and let each server generate packets based
on a predefined update ratio with uniformly distributed random
keys. Fig. 13 shows that as the update ratio increases, the through-
put degradation depends on the number of state store servers; by
adding more servers, we can achieve higher throughput.

7.3 Failover and Recovery
Next, we measure how fast the end-to-end performance can be
recovered by RedPlane in the presence of switch failure and re-
covery. We run iperf [15] to measure between two servers, at-
tached to a core switch and a ToR switch respectively. All traffic
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Figure 15: Switch packet buffer occupancy due to request
buffering.

passes through a NAT running on the programmable switches. We
compare changes in TCP throughput when (1) there is no failure
(Baseline), (2) one switch fails without RedPlane (Failure), (3) one
switch fails while using RedPlane (Failure+RedPlane).

Fig. 14 shows the results. In a network without RedPlane, when
Switch-1 fails, packets are rerouted to another switch and dropped,
breaking the TCP connections. In contrast, RedPlane-enabled NAT
successfully maintains high throughput when the switch fails and
recovers after short disruptions (0.9 and 1.0 seconds). This recovery
time is affected both by the core switch’s failure detection/rerouting
time and RedPlane’s lease period (set to 1 second here). Control
plane and state store optimizations could further reduce this.

7.4 RedPlane Switch ASIC Resource Usage
Packet buffer usage. In this experiment, we evaluate the overhead
of our request buffering mechanism (§5.2). Since RedPlane buffers
a replication request until it receives a reply corresponding to the
request from the state store, it consumes some amount of the switch
packet buffer. Since there is no precise way of measuring the buffer
usage in real-time, we instead use the queue depth information
provided by the switch ASIC to estimate the upper bound of the
buffer occupancy.11 Specifically, we assume a write-centric applica-
tion where every incoming packet issues a request (i.e., the most
demanding scenario). And we let each request packet record its
queue depth information to a P4 register in the data plane and read
it from the control plane for every second and take the maximum
value. We generate packets from a traffic generation server while
varying the traffic rate and the request loss rate.12 Fig. 15 shows
the result. When there is no request loss, the buffer occupancy is
less than 1.5 KB even at 100 Gbps traffic rate. As we increase the
request loss rate, the buffer usage also grows; when the traffic rate
11It is a per-packet queue depth measured when a packet is dequeued from the buffer,
and the Tofino ASIC provides this information as an intrinsic metadata that can be
accessed at the egress pipeline.
12We emulate the request loss by dropping requests at a certain probability at the
switch.

is 100 Gbps and ≈2% of requests are lost, our buffering mechanism
consumes at most 18 KB, which is acceptable for a given a few tens
of MB of the packet buffer in the switch ASIC.
Other ASIC resource usage. We also measure the usage of other
ASIC resources consumed by RedPlane data plane for 100K con-
current flows (using the Tofino-P4 compiler’s output), expressed
relative to each application’s baseline usage. Ample resources re-
main: SRAM is the most used (13.2%), and all others are less than
10% (details in Appendix E). Scaling up concurrent flows would
increase only SRAM usage, as it stores per-flow information (lease
expiration time, current sequence number, and last acknowledged
sequence number).

8 Related Work

In-switch applications. Recent efforts have shown that offloading
to programmable switches enhances performance. For example,
offloading the sequencer [46], key-value cache [38, 52], and co-
ordination service [37] improves the performance of distributed
systems. However, these applications can lose their state due to
switch failures. RedPlane can help make them fault-tolerant or
simplify their designs.
Fault-tolerance and statemanagement for NFs. Fault-tolerance
for NFs or middleboxes has been addressed by prior systems like
Pico [63] and FTMB [70]. When an NF instance fails, the state of
the failed NF is recovered through checkpoint or rollback recovery
on a new NF instance. These approaches cannot be applied directly
to the switch data plane (§2.2). Previous work on state management
for stateful NFs uses local or remote storage to manage NF state [31,
64, 75]. However, these APIs target planned state migration rather
than unplanned failures. Similar work (again, targeting planned
migration) has also been proposed for router migration [41].
Externalmemory for switches. Recent work shares our approach
of using servers’ memory as external storage for switch state [42],
but towards a different goal: allow switches to handle state larger
than their on-device memory. It does not address fault tolerance or
multi-writer consistency.
Switch-based reliability protocols. Other recent work runs co-
ordination protocols between switches to build reliable storage [29,
37]. Our goal is conceptually different – to replicate state for in-
switch applications rather than provide a networked storage service
– but uses some similar mechanisms, like network sequencing [46].

9 Conclusions
While many recent efforts have demonstrated the potential benefits
of running datacenter functions on programmable switches, we ar-
gue that there is one critical missing piece in current designs, which
is fault tolerance. To address this issue, in this paper, we present
RedPlane, which provides a fault tolerant state store abstraction for
in-switch applications. We formally define a linearizability-based
correctness model for a replicated switch data plane state and build
a practical replication protocol based on it. Our evaluation with
various stateful applications on a real testbed shows that RedPlane
can support fault-tolerance with minimal performance and resource
overheads and enable end-to-end performance to quickly recover
from switch failures.
Ethics: This work does not raise any ethical issues.
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A Details of Lazy Snapshotting

Algorithm 1: Lazy snapshotting
/* 1-bit variable indicating the current active buffer */

1 active_buffer← 0;
/* array of 1-bit variables indicating which buffer has has lastly been

updated for a certain slot */

2 last_updated_buffer[0. . . REGISTER_SIZE]← 0;
/* two copies of the replicated data structure (e.g., a sketch in this

example) */

3 pair<int,int> sketch [0. . . REGISTER_SIZE]← 0;

4 Upon receiving a packet (𝑝𝑘𝑡 ):
/* is this the first pkt of a snapshot read burst? */

5 if pkt.type = SNAPSHOT_READ and pkt.index = 0 then
/* if so, swap the active buffer */

6 active_buffer← swap_active_buffer();
7 else

/* if not, get the current active buffer */

8 active_buffer← get_active_buffer();
/* which buffer was lastly updated for this index? */

9 last_updated_buffer_for_index← update_last_updated_buffer(pkt.index,active_buffer);
/* for a regular packet */

10 if pkt.type = SKETCH_UPDATE then
/* is this the first time this buffer has been touched since we took

a snapshot? */

11 if active_buffer ≠ last_updated_buffer_for_index then
/* if so, copy data from the inactive buffer before updating */

12 if active_buffer = 0 then
13 pkt.result← copy_update_and_read_buffer_0(pkt.index, pkt.update);
14 else
15 pkt.result← copy_update_and_read_buffer_1(pkt.index, pkt.update);

/* if not, some other packet has touched this buffer since we took a

snapshot, so just do update */

16 else
17 if active_buffer = 0 then
18 pkt.result← update_and_read_buffer_0(pkt.index,pkt.update);
19 else
20 pkt.result← update_and_read_buffer_1(pkt.index, pkt.update);

/* for a snapshot read packet */

21 else if pkt.type = SNAPSHOT_READ then
22 pkt.update = 0; /* is this the first time this buffer has been touched

since we took a snapshot? */

23 if active_buffer ≠ last_updated_buffer_for_index then
/* if so, copy data from the inactive buffer before updating */

24 if active_buffer = 0 then
25 pkt.result← copy_update_and_read_buffer_0(pkt.index, pkt.update);
26 else
27 pkt.result← copy_update_and_read_buffer_1(pkt.index, pkt.update);

/* if not, some other packet has touched this buffer since we took a

snapshot, so just do read */

28 else
29 if active_buffer = 0 then
30 pkt.result← update_and_read_buffer_1(pkt.index, pkt.update);
31 else
32 pkt.result← update_and_read_buffer_0(pkt.index, pkt.update);

Algorithm 1 shows the pseudocode for lazy snapshotting de-
scribed in §5.4. We implement this logic in P4 to provide a basic
sketch with 64×32-bit slots. As explained in §6, we implement
count-min sketches using three of this sketch.

B P4 Skeleton Code of RedPlane-enabled
Application

As mentioned in §6 of our paper, we expose RedPlane APIs as
modules in P4. Fig. 16 illustrates how the P4 implementation of
RedPlane-enabled NAT looks like. Developers need to include the
P4 file of RedPlane core APIs (line 1) and the P4 file of their original
application code (line 2). Lines highlighted in red shows initial-
ization and the use of the RedPlane ingress and egress control
block instances (line 5, 9, 20, and 24). And the lines highlighted
in bold blue indicates modules of the original NAT program (line
6 and 11). Since NAT does not update state in the data plane (i.e.,
read-centric), no modification is needed to their original P4 imple-
mentation. Other applications (firewall, load balancer, HH-detector,
etc.) introduced in the paper can be implemented in a similar way.
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#include "redplane_core.p4" // RedPlane core API
#include "nat.p4" // developer’s NAT program

control Ingress (headers hdr, metadata meta) {
RedPlaneIngress() redplane_ingress;
NAT_Ingress() nat_ingress;
L3_Routing() l3_routing;
apply {

redplane_ingress.apply(hdr, meta);
if (meta.is_normal_pkt == true) {

nat_ingress.apply (hdr, meta);
}
if (meta.is_normal_pkt == true ||

meta.is_piggybacked == true) {
l3_routing_ingress.apply (hdr, meta);

}
}

}
control Egress (headers hdr, metadata meta) {

RedPlaneEgress() redplane_egress;
apply {

if (meta.is_redplane_req == true ||
meta.is_redplane_ack == true) {
redplane_egress.apply(hdr, meta);

}
}

}

Pipeline(
IngressParser(),
Ingress(),
IngressDeparser(),
EgressParser(),
Egress(),
EgressDeparser()

) pipe;

Switch(pipe) main;

Figure 16: The main part of P4 implementation of RedPlane-
enabled NAT.

C TLA+ Specification of RedPlane Protocol
Wewrite a TLA+ specification of RedPlane protocol to model-check
its correctness.
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module redplane protocol
extends Integers, Sequences, TLC , FiniteSets
constants NULL, SWITCHES , LEASE PERIOD , TOTAL PKTS

variables query , request queue, SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum, pc

Exists(val)
∆
= val 6= NULL

RequestingSwitches
∆
= {sw ∈ SWITCHES : Exists(query [sw ]) ∧ query [sw ].type = “request”}

variables switch, q , seqnum, round , upSwitches, sent pkts

vars
∆
= 〈query , request queue, SwitchPacketQueue, RemainingLeasePeriod ,

owner , up, active, AliveNum, global seqnum, pc, switch, q , seqnum,
round , upSwitches, sent pkts〉

ProcSet
∆
= {“StateStore”} ∪ (SWITCHES ) ∪ {“LeaseTimer”} ∪ {“pktgen”}

Init
∆
= Global variables

∧ query = [sw ∈ SWITCHES 7→ NULL]
∧ request queue = 〈〉
∧ SwitchPacketQueue = [sw ∈ SWITCHES 7→ 0]
∧ RemainingLeasePeriod = [sw ∈ SWITCHES 7→ 0]
∧ owner = NULL
∧ up = [sw ∈ SWITCHES 7→ true]
∧ active = [sw ∈ SWITCHES 7→ false]
∧AliveNum = Cardinality(SWITCHES )
∧ global seqnum = 0

∧ switch = NULL
∧ q = NULL

∧ seqnum = [self ∈ SWITCHES 7→ 0]
∧ round = [self ∈ SWITCHES 7→ 0]

∧ upSwitches = {}
∧ sent pkts = 0
∧ pc = [self ∈ ProcSet 7→ case self = “StateStore”→ “START STORE”
2self ∈ SWITCHES → “START SWITCH”
2self = “LeaseTimer”→ “START TIMER”
2self = “pktgen”→ “START PKTGEN”]

START STORE
∆
= ∧ pc[“StateStore”] = “START STORE”

1
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∧ pc′ = [pc except ! [“StateStore”] = “STORE PROCESSING”]
∧ unchanged 〈query , request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , up, active,
AliveNum, global seqnum, switch, q , seqnum,
round , upSwitches, sent pkts〉

STORE PROCESSING
∆
= ∧ pc[“StateStore”] = “STORE PROCESSING”

∧ if request queue 6= 〈〉
then ∧ switch ′ = Head(request queue)
∧ request queue ′ = Tail(request queue)
∧ q ′ = query [switch ′]
∧ if q ′.lease request = “new”
then ∧ if owner 6= NULL
then ∧ pc′ = [pc except ! [“StateStore”] = “BUFFERING”]
else ∧ pc′ = [pc except ! [“StateStore”] = “TRANSFER LEASE”]
else ∧ if q ′.lease request = “renew”
then ∧ pc′ = [pc except ! [“StateStore”] = “RENEW LEASE”]
else ∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
else ∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
∧ unchanged 〈request queue, switch, q〉
∧ unchanged 〈query , SwitchPacketQueue,
RemainingLeasePeriod , owner , up, active,
AliveNum, global seqnum, seqnum, round ,
upSwitches, sent pkts〉

TRANSFER LEASE
∆
= ∧ pc[“StateStore”] = “TRANSFER LEASE”

∧ query ′ = [query except ! [switch] = [type 7→ “response”] @@ ([last seqnum 7→ global seqnum])]
∧ RemainingLeasePeriod ′ = [RemainingLeasePeriod except ! [switch] = LEASE PERIOD ]
∧ owner ′ = switch
∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
∧ unchanged 〈request queue, SwitchPacketQueue, up, active,
AliveNum, global seqnum, switch, q , seqnum,
round , upSwitches, sent pkts〉

BUFFERING
∆
= ∧ pc[“StateStore”] = “BUFFERING”

∧ request queue ′ = Append(request queue, switch)
∧ pc′ = [pc except ! [“StateStore”] = “STORE PROCESSING”]
∧ unchanged 〈query , SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , seqnum, round , upSwitches, sent pkts〉

RENEW LEASE
∆
= ∧ pc[“StateStore”] = “RENEW LEASE”

∧ global seqnum ′ = q .write seq
∧ query ′ = [query except ! [switch] = [type 7→ “response”] @@ ([last seqnum 7→ global seqnum ′])]
∧ RemainingLeasePeriod ′ = [RemainingLeasePeriod except ! [switch] = LEASE PERIOD ]
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∧ owner ′ = switch
∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
∧ unchanged 〈request queue, SwitchPacketQueue, up, active,
AliveNum, switch, q , seqnum, round , upSwitches,
sent pkts〉

statestore
∆
= START STORE ∨ STORE PROCESSING ∨ TRANSFER LEASE

∨ BUFFERING ∨ RENEW LEASE

START SWITCH (self )
∆
= ∧ pc[self ] = “START SWITCH”

∧ ∨ ∧ (up[self ] ∧ SwitchPacketQueue[self ] > 0)
∧ active ′ = [active except ! [self ] = true]
∧ if RemainingLeasePeriod [self ] = 0
then ∧ pc′ = [pc except ! [self ] = “NO LEASE”]
else ∧ pc′ = [pc except ! [self ] = “HAS LEASE”]
∨ ∧ pc′ = [pc except ! [self ] = “SW FAILURE”]
∧ unchanged active
∧ unchanged 〈query , request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , up,
AliveNum, global seqnum, switch, q ,
seqnum, round , upSwitches, sent pkts〉

NO LEASE (self )
∆
= ∧ pc[self ] = “NO LEASE”

∧ query ′ = [query except ! [self ] = [type 7→ “request”] @@ ([lease request 7→ “new”])]
∧ request queue ′ = Append(request queue, self )
∧ pc′ = [pc except ! [self ] = “WAIT LEASE RESPONSE”]
∧ unchanged 〈SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , seqnum, round , upSwitches,
sent pkts〉

WAIT LEASE RESPONSE (self )
∆
= ∧ pc[self ] = “WAIT LEASE RESPONSE”

∧ query [self ].type = “response”
∧ seqnum ′ = [seqnum except ! [self ] = query [self ].last seqnum]
∧ query ′ = [query except ! [self ] = NULL]
∧ pc′ = [pc except ! [self ] = “HAS LEASE”]
∧ unchanged 〈request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , up,
active, AliveNum, global seqnum,
switch, q , round , upSwitches,
sent pkts〉

HAS LEASE (self )
∆
= ∧ pc[self ] = “HAS LEASE”

∧ seqnum ′ = [seqnum except ! [self ] = seqnum[self ] + 1]
∧ query ′ = [query except ! [self ] = [type 7→ “request”] @@ ([lease request 7→ “renew”, write seq 7→ seqnum ′[self ]])]
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∧ request queue ′ = Append(request queue, self )
∧ pc′ = [pc except ! [self ] = “WAIT WRITE RESPONSE”]
∧ unchanged 〈SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , round , upSwitches, sent pkts〉

WAIT WRITE RESPONSE (self )
∆
= ∧ pc[self ] = “WAIT WRITE RESPONSE”

∧ query [self ].type = “response”
∧Assert(seqnum[self ] = query [self ].last seqnum,
“assertion failed.”)
∧ query ′ = [query except ! [self ] = NULL]
∧ active ′ = [active except ! [self ] = false]
∧ SwitchPacketQueue ′ = [SwitchPacketQueue except ! [self ] = SwitchPacketQueue[self ]− 1]
∧ pc′ = [pc except ! [self ] = “START SWITCH”]
∧ unchanged 〈request queue,
RemainingLeasePeriod , owner , up,
AliveNum, global seqnum, switch,
q , seqnum, round , upSwitches,
sent pkts〉

SW FAILURE (self )
∆
= ∧ pc[self ] = “SW FAILURE”

∧ if AliveNum > 1 ∧ up[self ] = true
then ∧ up′ = [up except ! [self ] = false]
∧AliveNum ′ = AliveNum − 1
∧ query ′ = query
else ∧ if up[self ] = false
then ∧ up′ = [up except ! [self ] = true]
∧ query ′ = [query except ! [self ] = NULL]
∧AliveNum ′ = AliveNum + 1
else ∧ true
∧ unchanged 〈query , up, AliveNum〉
∧ pc′ = [pc except ! [self ] = “START SWITCH”]
∧ unchanged 〈request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , active,
global seqnum, switch, q , seqnum, round ,
upSwitches, sent pkts〉

switch (self )
∆
= START SWITCH (self ) ∨NO LEASE (self )

∨WAIT LEASE RESPONSE (self ) ∨HAS LEASE (self )
∨WAIT WRITE RESPONSE (self ) ∨ SW FAILURE (self )

START TIMER
∆
= ∧ pc[“LeaseTimer”] = “START TIMER”

∧ owner 6= NULL
∧ if RemainingLeasePeriod [owner ] > 0 ∧ active[owner ] = false
then ∧ RemainingLeasePeriod ′ = [RemainingLeasePeriod except ! [owner ] = RemainingLeasePeriod [owner ]− 1]
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∧ owner ′ = owner
else ∧ if RemainingLeasePeriod [owner ] = 0
then ∧ owner ′ = NULL
else ∧ true
∧ owner ′ = owner
∧ unchanged RemainingLeasePeriod
∧ pc′ = [pc except ! [“LeaseTimer”] = “START TIMER”]
∧ unchanged 〈query , request queue, SwitchPacketQueue, up,
active, AliveNum, global seqnum, switch, q ,
seqnum, round , upSwitches, sent pkts〉

expirationTimer
∆
= START TIMER

START PKTGEN
∆
= ∧ pc[“pktgen”] = “START PKTGEN”

∧ if sent pkts < TOTAL PKTS
then ∧AliveNum ≥ 1
∧ upSwitches ′ = {sw ∈ SWITCHES : up[sw ]}
∧ ∃ sw ∈ upSwitches ′ :
SwitchPacketQueue ′ = [SwitchPacketQueue except ! [sw ] = SwitchPacketQueue[sw ] + 1]
∧ sent pkts ′ = sent pkts + 1
∧ pc′ = [pc except ! [“pktgen”] = “START PKTGEN”]
else ∧ pc′ = [pc except ! [“pktgen”] = “Done”]
∧ unchanged 〈SwitchPacketQueue, upSwitches,
sent pkts〉
∧ unchanged 〈query , request queue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , seqnum, round〉

packetGen
∆
= START PKTGEN

Next
∆
= statestore ∨ expirationTimer ∨ packetGen

∨ (∃ self ∈ SWITCHES : switch (self ))

Spec
∆
= ∧ Init ∧2[Next ]vars

∧WFvars(statestore)
∧ ∀ self ∈ SWITCHES : WFvars(switch (self ))
∧WFvars(expirationTimer)
∧WFvars(packetGen)

AtLeastOneAliveSwitch
∆
=

∧AliveNum ≥ 1
∧ ∃ sw ∈ SWITCHES : up[sw ] = true

SingleOwnerInvariant
∆
=

5

242



∀ sw ∈ SWITCHES :
sw 6= owner ⇒ RemainingLeasePeriod [sw ] = 0

Liveness
∆
=

∨ ∀ sw ∈ SWITCHES :
(query [sw ] 6= NULL ∧ query [sw ].type = “request”) ;
owner = sw

6
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Core layer
(Arista 7060CX)

ToR layer
(Arista 7060CX)

Aggrega�on layer
(Programmable Arista 7170)

Figure 17: Three-layer network testbed for experiments.

Resource Additional usage

Match Crossbar 5.3%
Meter ALU 8.3%
Gateway 9.9%
SRAM 13.2%
TCAM 11.8%
VLIW Instruction 5.5%
Hash Bits 3.7%

Table 2: Switch ASIC resources used by RedPlane.

D Testbed
We evaluate RedPlane on a testbed consisting of six commodity
switches (including two programmable ones) and servers, as shown
in Fig. 17.

E Detailed Switch ASIC Resource Utilization
Table 2 shows the additional switch ASIC resource consumption of
RedPlane for 100K concurrent flows (using the P4 compiler’s out-
put), expressed relative to each application’s baseline usage. Overall,
there are ample resources remaining to implement other functions
along with RedPlane. RedPlane uses TCAM to implement acknowl-
edgment processing and request timeout management, which need
range matches. In terms of scale vs. number of concurrent flows,
only the SRAM usage would increase proportional to the number
of flows as it stores per-flow information (lease expiration time,
current sequence number, and last acknowledged sequence num-
ber).
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