
PRISM: Rethinking the RDMA Interface
for Distributed Systems

Matthew Burke
Cornell University

United States
matthelb@cs.cornell.edu

Sowmya
Dharanipragada
Cornell University

United States
sjd266@cornell.edu

Shannon Joyner
Cornell University

United States
saj9191@gmail.com

Adriana Szekeres
VMware Research

United States
aaasz@cs.washington.edu

Jacob Nelson
Microsoft Research

United States
jacob.nelson@microsoft.com

Irene Zhang
Microsoft Research

United States
irene.zhang@microsoft.com

Dan R. K. Ports
Microsoft Research

United States
dan@drkp.net

Abstract
Remote Direct Memory Access (RDMA) has been used to
accelerate a variety of distributed systems, by providing low-
latency, CPU-bypassing access to a remote host’s memory.
However, most of the distributed protocols used in these sys-
tems cannot easily be expressed in terms of the simple mem-
ory READs and WRITEs provided by RDMA. As a result,
designers face a choice between introducing additional proto-
col complexity (e.g., additional round trips) or forgoing the
benefits of RDMA entirely.

This paper argues that an extension to the RDMA interface
can resolve this dilemma. We introduce the PRISM interface,
which adds four new primitives: indirection, allocation, en-
hanced compare-and-swap, and operation chaining. These
increase the expressivity of the RDMA interface, while still
being implementable using the same underlying hardware
features. We show their utility by designing three new ap-
plications using PRISM primitives, that require little to no
server-side CPU involvement: (1) PRISM-KV, a key-value
store; (2) PRISM-RS, a replicated block store; and (3) PRISM-
TX, a distributed transaction protocol. Using a software-based
implementation of the PRISM primitives, we show that these
systems outperform prior RDMA-based equivalents.

The first three authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483587

CCS Concepts: • Networks → Programming interfaces;
Data center networks; • Software and its engineering →
Distributed systems organizing principles.

Keywords: RDMA, remote memory access, distributed sys-
tems

ACM Reference Format:
Matthew Burke, Sowmya Dharanipragada, Shannon Joyner, Adriana
Szekeres, Jacob Nelson, Irene Zhang, and Dan R. K. Ports. 2021.
PRISM: Rethinking the RDMA Interface for Distributed Systems.
In ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP ’21), October 26–29, 2021, Virtual Event, Germany. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3477132.
3483587

1 Introduction
Remote Direct Memory Access (RDMA) has quickly become
one of the indispensable tools for achieving high throughput
and low latency in datacenter systems. As network band-
width continues to increase relative to CPU speed, it becomes
critical to reduce the CPU cost of packet processing. This
makes RDMA, which provides a standard, accelerated inter-
face for one host to directly access another’s memory, appeal-
ing: hardware RDMA implementations bypass the host CPU
entirely [28], and even software implementations offer signif-
icant performance improvements by simplifying the network
stack and reducing context-switching overhead [26].

A rich literature has explored how distributed systems can
be redesigned to use RDMA communication [6, 10, 14, 31,
44]. A common theme is that adapting applications to run
on RDMA requires complex—and costly—contortions. The
source of this complexity is the RDMA interface itself: few
distributed applications can readily express their logic in
terms of simple remote memory READ and WRITE opera-
tions. Consequently, many RDMA applications are forced to
add extra operations, i.e., extra network round trips, to their
protocols, sacrificing some of the latency benefits [10, 31, 32].
Others use hybrid designs that require application CPU in-
volvement on some operations [10, 31, 43] – or, in some

https://doi.org/10.1145/3477132.3483587
https://doi.org/10.1145/3477132.3483587
https://doi.org/10.1145/3477132.3483587

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

cases, just use RDMA to implement a faster message-passing
protocol [15, 34] – negating the benefits of CPU bypass.

This paper argues that moving beyond the basic RDMA
interface is necessary to achieve the full potential of network
acceleration for building low-latency systems. The RDMA
interface, originally designed to support parallel supercomput-
ing applications, fails to meet the needs of today’s distributed
systems. We show that by extending the interface with a
few additional primitives, it becomes possible to implement
sophisticated distributed applications like replicated storage
entirely using remote operations.

Our goal in this paper is to identify a set of generic (i.e.,
non-application specific) extensions to the RDMA interface
that allows distributed systems to better utilize the low la-
tency and CPU offload capabilities of RDMA hardware. Our
proposal is the PRISM interface. PRISM extends the RDMA
read/write interface with four additional primitives: indirec-
tion, allocation, enhanced compare-and-swap, and operation
chaining. In combination, these support common remote ac-
cess patterns such as data structure navigation, out-of-place
updates, and concurrency control. We argue that the PRISM
API is simple enough to implement in a RDMA NIC, as it
reuses existing microarchitectural mechanisms. We also im-
plement the PRISM interface in a prototype software-based
networking stack that uses dedicated CPU cores to imple-
ment remote operations, inspired by the approach taken by
Google’s SNAP networking stack [26].

We demonstrate the PRISM API’s benefits with three case
studies of common distributed applications. The first, a key-
value store, demonstrates that PRISM can be used to read and
manipulate remote data structures, reducing read latency to
75% of Pilaf [31] despite our prototype emulating one-sided
operations with software. The second, a replicated block store,
provides fault tolerant storage by using compare-and-swap
and indirect operations to implement the ABD quorum pro-
tocol [4], providing a 50% throughput improvement over a
traditional lock-based approach [44], again despite using ded-
icated CPU cores to implement one-sided operations. The
third, a transactional key-value store, provides strong atomic-
ity guarantees over a sharded storage system. Its new protocol
uses CAS and indirect operations to commit transactions us-
ing only two round trips. This yields a 20% improvement in
throughput over FaRM [10] while reducing latency by 18%.

To summarize, this paper makes these contributions:
• We show that the existing RDMA interface leads to

extra protocol complexity for distributed systems.
• We introduce the PRISM interface, which extends RDMA

with additional primitives to support common patterns
in distributed applications.

• We show that three sophisticated applications—key-
value stores, replicated block storage, and distributed
transactions— can be implemented entirely using the
PRISM interface.

• We build a software-based prototype of the PRISM
interface, and show that in spite of its additional per-
formance overhead relative to a NIC, applications built
atop PRISM achieve latency and throughput benefits.

2 Background and Motivation

RDMA is a widely-deployed [13, 26] network interface that
allows a remote client to directly read or write memory on
remote hosts, bypassing the remote CPU entirely.

2.1 RPCs vs Memory Accesses: The RDMA Dilemma

RDMA provides two types of operations. Two-sided opera-
tions have traditional message-passing semantics. A SEND
operation transmits a message to a remote application that
calls RECEIVE. One-sided operations allow a host to READ or
WRITE memory (in a pre-registered region) on a remote host.

Considerable debate has ensued in the systems community
about whether to use one-sided or two-sided operations [16,
19, 43]. One-sided operations are faster and more CPU ef-
ficient, but restricted to simple read and write operations.
Two-sided message passing, because it allows processing at
both ends, may yield a faster system overall even though the
communications operations themselves are slower.

To see how this tradeoff plays out, consider, for example,
Pilaf [31], an early RDMA-based key-value store. Pilaf stores
pointers to key-value objects in a hash table, with the actual
data stored in a separate extents structure. Both structures are
exposed through RDMA, so a client can perform a key-value
lookup by remotely reading the hash table, then using the
pointer to perform a remote read into the extents store. This
requires no server-side CPU involvement, but takes two round
trips. A traditional key-value store implementation built using
two-sided operations would require only one round trip but
involve the CPU on every operation.

The dilemma for systems designers is, then, whether to
build a more complex protocol out of read or write operations,
or a simpler one with message passing? In other words, is it
faster to do two (or more) one-sided RDMA operations, or a
single RPC? In the early days of RDMA, the choice was clear:
a RDMA operation was about 20× faster than a RPC [31].
As subsequent work has dramatically reduced the cost of
two-sided RPC [16, 19] and RDMA has been deployed in
larger-scale settings with higher latency [12, 13], the question
of which to use is far more complicated.

To understand the current tradeoff, we measure the perfor-
mance of one-sided RDMA operations vs. two-sided RPC
implemented using eRPC [16] on two servers connected using
40 Gb Ethernet (see §4.3 for experimental details). Reading
a 512-byte value using a one-sided read completes in about
3.2 𝜇s, making it 43% faster than using a two-sided RPC
(5.6 𝜇s). But this implies that a system that does two one-
sided reads, like the example above, is about 0.8 𝜇s slower
than a pure software implementation. Thus, one-sided RDMA

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

operations offer a performance benefit only when using them
does not require a more complex protocol.

2.2 Principles for Post-RDMA Systems

Most work on RDMA systems assumes that we are limited to
the current RDMA read/write interface. What if, instead, we
could extend the RDMA interface? Hardware vendors [29]
and software implementations [26] have added various new
operations in an ad-hoc way. In this paper, we take a step
back and ask what new functionality is needed to support
distributed systems that run directly over RDMA, without
requiring either CPU involvement or additional round trips.

Navigating data structures. RDMA supports remote reads
when the size and location are known. Most applications, like
Pilaf, use more complex data structures to build indexes, to
store variable-length objects, and to help handle concurrent
updates. Traversing these structures requires multiple RDMA
reads. Being able to perform indirect operations on pointers
could eliminate some of these round trips.

Supporting out-of-place writes. Modifying remote data
structures is particularly challenging because reads may hap-
pen concurrently. To avoid the ensuing consistency issues,
many systems [10, 31, 32] perform writes only from the server
CPU. We aim to build systems that can handle both reads and
writes using RDMA operations. To do so, we advocate a de-
sign pattern where new data is written out-of-place into a
separate buffer, then a pointer is atomically updated to swap
from the old to new value – an approach similar to read-
copy-update [27] in concurrent programming. Achieving this
requires new RDMA support for writing data to a new buffer,
and to atomically update a pointer to its location.

Optimistic concurrency control. Updates to complex data
structures require synchronization. While it is possible to use
RDMA to implement locks today [44, 45], the performance
penalty can be substantial. Expanding RDMA’s compare-and-
swap functionality would allow us to implement sophisti-
cated, version-based optimistic concurrency control [21], an
approach that fits well with our out-of-place update method.

Chaining operations. A common theme is that applica-
tions need to perform compound operations, where the argu-
ment to one depends on the result of a previous one – reading
a pointer then the value it points to, or writing an object then
swapping a pointer. Today, this requires returning the inter-
mediate result to the client and performing a new operation –
and another network round trip. We could avoid this overhead
if we had a way to chain operations so that one depends on
the other, but still execute them in one round trip.

2.3 The Case for an Extended Interface

The principles of the previous section could be addressed by
extending the RDMA interface in various ways. In this paper,
we argue that a set of simple, generic extensions can be useful

for a variety of applications. Using simple operations makes
it feasible to implement and deploy these extensions.

An alternate approach is to allow applications to provide
their own code that runs on the remote host, i.e., to deploy
custom application logic to smart NICs [3, 37]. While power-
ful, this approach comes with considerable deployment chal-
lenges. From talking to cloud providers that have deployed
smart NICs, rolling out smart NIC updates is a challenge even
in a single-tenant environment because it involves downtime
for everything running on the host. Allowing users in multi-
tenant environments to provide their own code presents major
security and performance isolation challenges [22, 41].

We instead argue for a set of simple, generic primitives.
Such simple extensions are likely to be useful for more ap-
plications, both current and future. Simplicity here also aids
implementation: we argue that our proposed primitives can be
added either to software-based networking stacks, reconfig-
urable smart NICs, or even to future fixed-function NICs. The
remainder of this paper proposes such general extensions, and
demonstrates that they are useful for common applications.

3 PRISM Interface
To address the challenges inherent in building distributed
systems with RDMA, we propose an extended network inter-
face, PRISM (Primitives for Remote Interaction with System
Memory). PRISM adds four additional features to the exist-
ing RDMA interface. These are designed to support common
patterns we observe in implementing distributed protocols.

PRISM’s interface is designed around three principles: (1)
generality – they should not encode application-specific func-
tionality; (2) minimal interface complexity; and (3) minimal
implementation complexity, which enables fast, predictable
performance and facilitates implementation on a variety of
platforms, including future NIC ASICs.

Following these principles, we extend the RDMA interface
in four ways. Table 1 provides a summary of the PRISM API.

3.1 Indirect Operations

Many RDMA applications need to traverse remote data struc-
tures. These structures use indirection for many purposes:
to provide indexes, to support variable length data, etc. Cur-
rently, following a pointer requires an extra round trip.

PRISM allows READ, WRITE, and compare-and-swap (CAS)
operations to take indirect arguments. The target address of
these operations can instead be interpreted as the address of a
pointer to the actual target. Additionally, the data for a WRITE
or CAS operation can be read from a server-side memory
location instead of from the RDMA request itself.

For READs and WRITEs, the target can optionally be in-
terpreted as a ⟨ptr, bound⟩ struct. In that case, the opera-
tion length is limited to the smaller of bound or the client-
requested length. This supports variable-length objects: a
client can perform a read with large length, but only receive
as much data as is actually stored.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

Indirect Reads and Writes:
• READ(ptr addr, size len, bool indirect, bool bounded) → byte[]

Returns the contents of the target address – either addr or, if indirect is set, *addr.
If bounded is set, reads min(len, addr->bound) bytes; otherwise reads len bytes.

• WRITE(ptr addr, byte[] data, size len, bool addr_indirect, bool addr_bounded, bool data_indirect)
Writes data to a target address – either addr or, if addr_indirect is set, *addr.
If addr_bounded is set, writes min(len, addr->bound) bytes; otherwise writes len bytes.
If data_indirect is set, data is interpreted as a server-side pointer and its target is used as the source data.

Allocation:
• ALLOCATE(qp freelist, byte[] data, size len) → ptr

Pops the first buffer buf from the specified free list (represented as a RDMA queue pair). The specified data is written to buf, and
the address of buf is returned.

Enhanced Compare-and-Swap:
• CAS(mode, ptr target, byte[] data, bitmask compare_mask, bitmask swap_mask, bool target_indirect, bool data_indirect) → byte[]

Atomically compares (*target & compare_mask) with (data & compare_mask) using the operator specified by mode, and, if
successful, sets *target = (*target & ~swap_mask) | (data & swap_mask). Returns the previous value of *target.
If target_indirect or data_indirect is set, the corresponding argument is first treated as a pointer and dereferenced; this is not
guaranteed to be atomic.

Operation Chaining:
• CONDITIONAL: Executes operation only if previous operation was successful. Operations that generate NACKs or errors, or CAS

operations that do not execute, are considered unsuccessful.
• REDIRECT(addr) Instead of returning operation’s output to the client, write it to addr instead.

Table 1. PRISM Primitives

Indirect operations in PRISM reuse existing RDMA secu-
rity mechanisms that ensure remote clients can only operate
on regions of host memory to which they have been granted
access. To access a memory region with an indirect operation,
a client must include the rkey that was generated by the host
when the region was first registered with NIC. The operation
is rejected by the host if either the target address or the loca-
tion pointed to by the target address is in a memory region
with a different rkey (or that has not been registered at all).

3.2 Memory Allocation

Modifying data structures is particularly challenging with the
existing RDMA interface: objects must be written into fixed,
pre-allocated memory regions, making it difficult to handle
variable-sized objects or out-of-place updates. What is needed
is a memory allocation primitive. PRISM provides one, which
allocates a buffer and returns a pointer to its location.

To use PRISM’s allocation primitive, a server-side process
registers (“posts”, in RDMA parlance) a queue of buffers with
the NIC. When the NIC receives an ALLOCATE request from
a remote host, it pops a buffer from this free list, writes the
provided data into the buffer, and responds with the address.
This operation is especially powerful in combination with
PRISM’s request chaining mechanism, discussed below: a
PRISM client can allocate a buffer, write into it, then install a
pointer to it (via CAS) in another data structure.

PRISM performs memory allocations on the NIC (or soft-
ware networking stack) data plane. Memory registrations,
however, are done by the server CPU. This is necessary be-
cause registering memory requires interaction with the kernel
to identify the corresponding physical addresses and pin the

buffers. Because the server CPU is involved, it is essential
for the correctness of applications reusing these buffers that
recycled buffers only be added back to the free list when con-
current NIC operations are complete. While this simply shifts
the burden of synchronizing the NIC and the server CPU to
the implementation of the primitives, it importantly moves
this synchronization off the regular path for applications.

Management of client-allocated memory can be challeng-
ing; this challenge is a fundamental one for applications that
modify state through remote accesses. Specific memory man-
agement policies are left to the discretion of the application.
The applications in this paper use clients to detect when ob-
jects are no longer used, e.g., when a previous version has
been replaced. They report the unused buffer to a daemon
running on the server (via traditional RPC), which re-registers
it with the NIC’s free list; batching can be employed at both
client and server sides to minimize overhead. An alternate,
garbage-collection-inspired approach would be for server-
side application code to periodically scan data structures to
identify buffers that can be reclaimed.

Our allocator design is intentionally simple, merely al-
locating the first available buffer from a particular queue.
We choose this over a more complex allocator because (as
discussed in §4.2) existing RDMA NICs already have the
necessary hardware support to implement it. A consequence
is that allocating memory using entire pre-allocated buffers
introduces space overhead. Applications can minimize this
effect by registering multiple queues containing buffers of dif-
ferent sizes, and selecting the appropriate one. For example,
using buffers sized as powers of two guarantees a maximum

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

space overhead of 2×. A pure software implementation might
choose to use a more sophisticated allocator.

3.3 Enhanced Compare-And-Swap

Atomic compare-and-swap (CAS) is a classic primitive for up-
dating data in parallel systems. The RDMA standard already
offers an atomic CAS operation [30], but it is highly restricted:
it does a single equality comparison and then swaps a 64-bit
value. In our experience, this is insufficient to implement
performant applications (including those in §6–8). Indeed,
few applications today use RDMA atomic operations except
to implement locks [33, 45]. While it is possible to imple-
ment arbitrarily complex atomic operations using locks, this
requires multiple costly round trips and increases contention.

To address this, we extend the CAS primitive in three ways.
First, we adopt the extended atomics interface currently pro-
vided by Mellanox RDMA devices [30], which allows CAS
operations up to 32 bytes, and uses separate bitmasks for the
compare and swap arguments to make it possible to compare
one field of a structure and swap another. Second, we incor-
porate indirect addressing (§3.1) for either the target address
or compare and swap values. We do not guarantee that deref-
erencing the indirect argument pointers is atomic – only the
CAS itself is – but this allows us to load argument values from
memory. Finally, we provide support for arithmetic compar-
ison operators (greater/less than) in the compare phase, in
addition to bitwise equality. This supports the common pat-
tern of updating a versioned object: check whether the new
version is greater than the existing one, and if so update both
the version number and the object.

PRISM’s CAS operations are atomic with respect to other
PRISM operations. Like existing RDMA atomics, they are not
guaranteed atomic with respect to concurrent CPU operations.

3.4 Operation Chaining

Distributed applications often need to do sequences of data-
dependent operations to read or update remote data structures.
For example, they may wish to allocate a buffer, write to it,
then update a pointer to point to it. Currently, each operation
must return to the client before it can issue the next. PRISM
provides a chaining mechanism that allows compound opera-
tions like this to be executed in a single round trip.

Conditional operations. RDMA does not, in general, guar-
antee that operations execute in order. We add a conditional
flag that delays execution of an operation until previous oper-
ations from the same client complete, and does not execute
unless the previous operation was successful. A CAS operation
whose comparison fails is treated as unsuccessful here.

Output redirection. We introduce another flag which spec-
ifies that the output of an operation (READ or ALLOCATE)
should, rather than being sent to the client, be written to a
specified memory location. That memory location will gener-
ally be a per-connection temporary buffer. For example, one

could perform an ALLOCATE, redirect its output to a tempo-
rary location, then use a conditional WRITE to store a pointer
to the newly allocated buffer elsewhere.

3.5 Discussion

The PRISM primitives together fulfill the goals from §2.2
and §2.3. Indirect operations reduce the number of round
trips needed to navigate data structures. The ALLOCATE and
enhanced CAS primitives, combined with chaining, support
out-of-place updates: an application can ALLOCATE a new
buffer, write data into it, and install a pointer to it into another
structure using CAS, all within a single round trip. Finally, the
flexibility of our CAS operation makes it possible to imple-
ment version-based concurrency control mechanisms.

4 PRISM Implementation
PRISM’s API consists of simple primitives so that they can be
easily added to a variety of RDMA implementations. To eval-
uate their effectiveness in building distributed applications,
we have built a software-based implementation (§4.1). We
also analyze the feasibility of implementing PRISM in a NIC
(§4.2). We evaluate the performance of our software imple-
mentation and projected benefits of hardware implementation,
along with a smart NIC approach. (§4.3).

4.1 Software PRISM Implementation

We use a software implementation, inspired by Google’s
Snap [26], to quantitatively evaluate PRISM’s benefits for
applications. This is a library used on both the client and
server, that supports both traditional RDMA operations and
the PRISM extensions. It implements PRISM extensions by
communicating via eRPC [16] with a dedicated thread on the
remote side, which implements the appropriate primitive.

Although software implementations use the server-side
CPU, one-sided operations executed within the network stack
provide performance benefits by avoiding the cost of context
switching and application-level thread scheduling. Reports on
the large-scale deployment of Snap at Google [26] have noted
these benefits, along with the deployment benefits of easier
upgradability and broader hardware support. A software ap-
proach also makes it easier to deploy new primitives; Snap
already supports (and its applications use) indirect reads.

PRISM’s limited interface makes an efficient implementa-
tion possible. While in principle it is possible to run arbitrarily
complex, application-specific operations in a software net-
working stack, this poses deployment and security challenges.
PRISM avoids this by providing a library of simple, common
primitives. Each of PRISM’s primitives can be run in short,
bounded time, which is important to prevent starvation.

Smart NIC deployments. In principle, the software im-
plementation could also be used on smart NICs; we have
experimented with it on a Mellanox BlueField. However, as
we show below (§4.3), this approach has lower performance

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

than a software implementation, so we do not advocate its
use unless reducing CPU utilization is the primary goal.

4.2 Hardware NIC Feasibility

PRISM is designed to be implementable in future RDMA
NICs. This part of our analysis is necessarily speculative, as
RDMA-capable NIC ASICs are proprietary designs that we
do not have the capability to extend. However, we argue that
implementing the PRISM primitives is feasible because they
reuses underlying mechanisms that already exist on today’s
NICs. For example, problems common to all primitives such
as loss, corruption, and timeout would be handled using the
same CRC and retransmission mechanisms that NICs already
implement, and each primitive reuses existing mechanisms:

Indirection. Indirect reads or writes are conceptually iden-
tical to a direct read followed by a direct read or write, RDMA
NICs already process memory accesses asynchronously, so
indirection does not change the processing model fundamen-
tally. However, it adds performance overhead, notably an
extra PCIe round trip, which we evaluate in the next section.

Allocation. Although ALLOCATE is conceptually a new
function, we observe that its behavior closely resembles tradi-
tional SEND/RECEIVE functionality, where the NIC allocates
a buffer from a receive queue to write an incoming message;
existing SRQ functionality allows multiple connections to
share a receive queue. We represent the free list the same way
as a queue pair – a standard RDMA structure containing a
list of free buffers. When the NIC processes an ALLOCATE
request, it pops the first buffer from the queue pair and returns
the pointer to the buffer. We use separate, application-selected
queue pairs for buffers of different sizes.

PRISM requires that buffers only be posted when all other
operations on the NIC are complete. Normal operations ac-
quire the read side of a reader-writer lock and posting a buffer
acquires the write side. This type of synchronization mecha-
nism already exists on NICs for processing CAS operations.

Enhanced CAS. RDMA NICs that support extended atom-
ics already support masked operations up to 32 bytes [29]. We
allow the equality comparison to be replaced with an inequal-
ity. The adder used to implement RDMA’s FETCH-AND-ADD
primitive can be used to compute this inequality.

Chaining. Additional flags enable conditional execution
and output redirection. RDMA NICs already enforce order-
ing relationships between certain types of operations and
stop processing on errors; our conditional flag just adds an
additional constraint. If the NIC lacks sufficient memory to
buffer a chained operation, it can, as always, reject the request
with a Receiver Not Ready packet, the standard flow control
mechanism.

Output redirection requires writing results to memory rather
than the network. If the target address is in host memory, the

operation whose output is being redirected would incur an ad-
ditional PCIe round trip, a potentially significant performance
hit. Fortunately, recent NIC designs provide a user-accessible
on-NIC memory region (256 KB on our Mellanox ConnectX-
5 NICs [28]). Applications using output redirection should
redirect to this on-NIC memory when possible and only use
it for temporary storage as part of a chain of operations. One
possible concern is that our design requires per-connection
temporary storage. Historically, per-connection state has lim-
ited the number of connections that a RDMA NIC can ef-
ficiently support [10, 18]. However, the amount of tempo-
rary space needed is small—32B/connection suffices for our
applications—in comparison to the existing per-connection
state (≈ 375B [16]). A 256 KB memory region provides 8192
32B locations, which exceeds the recommended concurrent
connection limit for good performance [18].

Wire Protocol Extensions The PRISM API requires mini-
mal modifications to the RDMA wire protocol. It requires an
additional 5 flags in the RDMA header (the IB BTH). Three
are used for indirection – two control whether two arguments
of READ, WRITE, or CAS are treated as indirect, and a third
indicates whether the target address of a READ or WRITE is a
bounded pointer. Two flags are used for chaining, to control
conditional and output redirection behavior respectively.

4.3 Performance Analysis

We compare the performance of our software implementation
of PRISM with existing RDMA operations in Figure 1. These
experiments use two machines (Intel Xeon Gold 6138 proces-
sors, 96GB RAM, Ubuntu 18.04) with Mellanox ConnectX-5
25 GbE RDMA NICs. To factor out the effect of network
latency, we use a direct connection (no switch) between the
two NICs. The baseline RDMA operations have 2.5 𝜇s la-
tency; PRISM’s software prototype adds another 2.5–2.8 𝜇s
depending on operation.

We also compare against a performance model of a hypo-
thetical ASIC-based PRISM NIC, computed by adding the
costs of additional PCIe round-trips (using prior measure-
ments [35]) to the latency of the corresponding RDMA oper-
ation – e.g., an indirect READ is modeled as a RDMA READ
plus one extra pointer-sized PCIe read. We also model the cost
of a smart NIC deployment by running our implementation
on a Mellanox BlueField, which combines a RDMA network
card with an ARM Cortex A72 CPU (8 cores, 800 MHz), and
adding the measured overhead of accessing host memory. Per-
haps surprisingly, this option is the slowest: the BlueField’s
slower CPU gives it higher processing latency, and it has high
latency (∼3 𝜇s) access to host memory.1

PRISM’s performance depends not just on the execution
cost but also network latency, because its performance benefit
1The BlueField is an off-path NIC [23]: its accesses to host memory must be
performed as RDMA requests through an internal switch. Other smart NIC
designs with lower latency to host memory (e.g., the Netronome NFP-6000
at 0.6 𝜇s [35]) may yield better performance.

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

La
te

nc
y

(µ
s)

0

4

8

12

16

Read Write Indirect Read Allocate Enhanced-CAS

RDMA PRISM SW PRISM BlueField
PRISM HW (proj.)

Figure 1. Microbenchmarks of PRISM software implemen-
tation, compared to hardware RDMA implementation. All
operations are performed with 512 byte values (except CAS).

Rack

Cluster

Data Center

Indirect Read Latency (µs)
0 15 30 45 60

2x RDMA PRISM SW
PRISM BlueField PRISM HW (proj)

Figure 2. Comparison of indirect read latency using RDMA
(two round trips) vs PRISM. We synthetically introduce net-
work latency based on (a) a single ToR switch (0.6 𝜇s), (b) a
three-tier cluster network (3 𝜇s), and (c) the reported RDMA
latency from Microsoft data centers (24 𝜇s [12])

comes from eliminating network round trips compared to
RDMA. Figure 1, by using a direct network link, considers
the worst case for PRISM. Figure 2 evaluates the impact of
network latency by comparing the cost of an indirect read with
PRISM against executing two RDMA reads. We consider a
single-rack deployment with one switch, a cluster with a three-
level switch hierarchy, and reported latency numbers from a
real data center [12] which also reflect network congestion.
In each case, PRISM’s software implementation outperforms
the RDMA baseline despite the additional cost of using the
CPU.

5 Applications Overview
To demonstrate the potential benefits of PRISM, we use three
case studies of representative distributed applications:

• PRISM-KV: a key-value store that implements both
read and write operations over RDMA. (§6)

• PRISM-RS: a replicated storage system that imple-
ments the ABD [4] quorum replication protocol. (§7)

• PRISM-TX: a transactional storage system that im-
plements a timestamp-based optimistic concurrency
control protocol using PRISM’s primitives. (§8)

Each of these classes of applications is widely used in prac-
tice and has been the subject of much research. In each of the
following sections, we review existing RDMA implementa-
tions of one of the applications, show how the current RDMA

interface leads to excess complexity or cost, and design a new
system using the PRISM primitives.

Using our software-based PRISM prototype, we show that
our PRISM applications outperform prior RDMA systems.
We use a cluster of up to 12 machines (with specs as in §4.3)
with 40 Gb Ethernet. Clients and servers are connected to
one Arista 7050QX switch (0.6 𝜇s added latency). This is
a challenging configuration for PRISM, as a larger cluster
or more congested network would have higher latency, and
hence benefit more from reducing round trips.

6 PRISM-KV: Key-Value Storage

Key-value stores are a widely used piece of infrastructure, and
are a natural opportunity for acceleration with RDMA. We
begin by considering a simple remote, unreplicated key-value
store, akin to memcached. It provides a GET/PUT interface,
where both keys and values can be strings of arbitrary length.

As an example of the challenges of implementing a KV
store with RDMA, consider again Pilaf [31]. Pilaf uses one-
sided operations to implement GET operations only; PUT
operations are sent through a two-sided RPC mechanism and
executed by the server CPU. It stores a fixed size hash table
that contains only a valid bit and a pointer to a key-value
store, which is in a separate extents region. To perform a GET
operation, a Pilaf client computes the hash of the key and
performs a one-sided READ into the hash table, followed by
a second READ to the data it points to. Hash collisions are
resolved using linear probing or cuckoo hashing, which may
require reading additional pointers.

Pilaf does not use one-sided operations to implement PUT
requests. Doing so would be challenging using the RDMA
interface: it supports variable-sized objects, so PUTs may need
to allocate new space in the extents area, and any in-place
modifications must be done in a way that does not conflict
with other concurrent operations.

6.1 PRISM-KV Design

Our new key-value store, PRISM-KV, follows the same gen-
eral design as Pilaf, but implements both GET and PUT oper-
ations using one-sided operations. It maintains a hash table
index containing pointers to data items; these items are now
in buffers allocated using PRISM’s ALLOCATE primitive.

The PRISM-KV server initially allocates memory regions
for the hash table and for the data, and registers both for
RDMA access. It also posts a set of buffers to be used for AL-
LOCATE, and periodically checks if more buffers are needed.

A client performs a GET operation by probing for the cor-
rect hash table slot using a hash of the key. To do so, it
performs a READ of a slot with the indirect bit set, retrieving
the data (if any) pointed to by the slot. It then verifies that
the key matches, retrying using linear probing in the case
of a hash collision. Each access (or retry) requires only one
PRISM operation, compared to 2 READS in Pilaf.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

 0

 5

 10

 15

 20

 25

 30

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M

L
at

en
cy

 (
µ

s)

Throughput (txns/s)

Pilaf
Pilaf (software RDMA)

PRISM-KV

Figure 3. Throughput versus average latency comparison for
PRISM-KV and Pilaf, 100% reads, uniform distribution.

To perform a PUT, a client first determines the correct hash
table slot as described above. The client then writes the new
value and updates the hash table slot using a chain of PRISM
primitives. First, the client writes the value to a new buffer
using ALLOCATE and redirects the address to a temporary
location. It then performs a CAS at the hash table slot such
that the old address is replaced with the address stored at
the temporary location if it has not changed since the client
determined the correct slot.2 Both the appropriate indirect bit
and the conditional flag are set for this last operation. If the
CAS fails, this indicates that a concurrent client subsequently
overwrote the same key with a newer value. If it succeeds,
the client asynchronously notifies the server to return the old
version’s buffer to the free list.

PRISM-KV ensures correctness during concurrent updates
because objects are written to separate buffers and the pointers
to these buffers are atomically installed into the appropriate
hash table slot. Reads that are concurrent with updates also do
not violate safety because an indirect read of a hash table slot
is guaranteed to read a well-formed address and addresses
fit within a cache line. Note that a client that just completed
an update may attempt to free a buffer while an indirect read
attempts to read it. This is not an issue for correctness because
PRISM waits for concurrent NIC operations to complete
before adding buffers back to the free list.

The entire chain of PRISM primitives takes a single round
trip like Pilaf’s two-sided PUT. However, unlike Pilaf, they
can be executed without application CPU involvement.

6.2 Evaluation

We implement Pilaf and PRISM-KV in the same framework
to evaluate the tradeoffs in using PRISM for a key-value store.
We compare against both a version of Pilaf that uses RDMA
hardware and one that uses the same software implementation
that PRISM uses. Each experiment uses one server machine
with the hardware described in Section 4.1 and up to 11 client

2The CAS operation is used instead of a non-conditional WRITE to avoid
overwriting the hash table entry in case the original object has been deleted
and the slot reused by a different object. This is a simple but heavy-handed
mechanism, in that it prevents all concurrent updates; a more sophisticated
approach might instead compare against a generation number that is only
incremented when a slot is reused for a different object.

 0

 10

 20

 30

 40

 50

 60

0M 2M 4M 6M 8M 10M 12M

L
at

en
cy

 (
µ

s)

Throughput (txns/s)

Pilaf
Pilaf (software RDMA)

PRISM-KV

Figure 4. Throughput versus average latency for PRISM-KV
and Pilaf, 50% reads, uniform distribution.

machines. The server uses 16 dedicated cores to handle RPCs
and implement the PRISM primitives, which is sufficient to
achieve line rate for both systems.

We evaluate performance on YCSB [7] workloads A (50%
R/50% W) and C (100% R). All workloads use 8 million 512
byte objects with 8 byte keys. The object access distribution
is uniform, and we use a collisionless hash function.

Indirect reads reduce latency. The read-only workload
(Figure 3) demonstrates that PRISM-KV achieves a latency
improvement, principally because it can replace two RDMA
READs with one indirect READ. As expected, when comparing
PRISM-KV to Pilaf using the RPC-based read implementa-
tion, the difference is about 2× (6 vs 14 𝜇s). The other 2 𝜇s are
CRC calculations that Pilaf uses to detect concurrent updates;
PRISM-KV’s atomic out-of-place update approach avoids the
need for these. The hardware RDMA implementation reduces
Pilaf’s latency to 8 𝜇s, still higher than PRISM-KV’s.

Complexity increases per-request network usage. Each
system can saturate the 40 Gbps network. However, PRISM-
KV achieves 22% higher read throughput because the server
transmits less data per request; Pilaf needs to send two read
replies with their attendant headers, along with the application-
level CRCs mentioned above.

Turning to the 50/50 read/write workload (Figure 4), Pilaf
uses one two-sided RPC to process each PUT, averaging 6 𝜇s.
PRISM-KV uses two round trips, one indirect READ to iden-
tify the correct hash table slot and one to perform the chain of
ALLOCATE, WRITE, and CAS. In our software prototype, this
requires 12 𝜇s. (Note that we are making the pessimal assump-
tion that the hash table slot is not cached; a read-modify-write
workload could avoid the first round trip on PUT).

Hardware implementations. Our software PRISM im-
plementation outperforms the latency and throughput of a
RDMA-enabled Pilaf on read-only workloads, and matches
it for 50/50 mixed workloads. Per the analysis in §4.3, we
anticipate that a hardware implementation of PRISM could
further reduce latency by another 2 𝜇s. Further, it frees up the
server cores required to execute RPCs, improving efficiency.

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

7 PRISM-RS: Replicated Block Storage
As our next case study, we consider a replicated block store.
A block store provides GET and PUT operations to objects
with fixed identifiers, i.e., blocks. Such a system provides the
foundation for reliably implementing more complex applica-
tions such as file systems [11, 39] or key-value stores [6, 10,
43, 44].

PRISM-RS is our block store design that guarantees lin-
earizability, remains available as long as no more than 𝑓 out
of 𝑛 = 2𝑓 + 1 replicas fail, and requires minimal CPU involve-
ment at replicas. It does so by implementing a variant of the
ABD [4] atomic register protocol with PRISM operations.

7.1 Background: ABD

The ABD protocol is a classic distributed algorithm that imple-
ments a fault tolerant, linearizable shared register [4]. Shared
registers are simply objects that multiple clients may con-
currently access with GET and PUT operations. We focus on
Lynch and Shvartsman’s multi-writer variant [25] because
allowing multiple clients to make modifications is necessary
for a practical storage system. We describe the protocol in
terms of a single register, though it is natural to extend this to
multiple registers by adding register identifiers to messages.

The protocol ensures fault-tolerance for up to 𝑓 failures by
replicating the value 𝑣 of the register in memory at 𝑛 = 2𝑓 + 1
replicas. Each replica associates a tag 𝑡 = (ts, id) with 𝑣 where
ts is a logical timestamp and id is the identifier of the client
that wrote the value. Operations are ordered lexicographically
by the tags that they observe (GETS) or produce (PUTS).

Clients execute GETS and PUTS using nearly identical two
phase protocols. They first run a read phase to find the latest
tag and value, then perform a write phase. For GETs, this
phase writes the value read to ensure that replicas are up to
date; for PUTs, it installs a new version with higher timestamp.

Read Phase. The client sends Read messages to all repli-
cas. When a replica receives a Read message, it replies with
its current value 𝑣 and tag 𝑡 . The client waits to receive a
ReadReply from 𝑓 + 1 replicas; then, it determines the most
recent value and tag by choosing the value 𝑣max associated
with the maximum tag 𝑡max returned in the 𝑓 + 1 replies.

Write Phase. After the read phase, the client propagates
a value 𝑣 ′ and tag 𝑡 ′ to 𝑓 + 1 replicas based on the operation.
For a GET, the client propagates 𝑣max and 𝑡max. For a PUT, the
client propagates the new value 𝑣put and forms a new tag 𝑡put
that is larger than 𝑡max = (tsmax, idmax). It does so by choosing
𝑡put = (tsmax + 1, id𝑐) where id𝑐 is the client identifier.

In either case, the client sends Write messages to all repli-
cas that contain 𝑣 ′ and 𝑡 ′. When a replica receives a Write(𝑣 ′, 𝑡 ′)
message, it overwrites 𝑣 with 𝑣 ′ and 𝑡 with 𝑡 ′ if 𝑡 ′ > 𝑡 . Fi-
nally, a replica notifies the client that it updated its value
and tag with a WriteReply message. The client completes the
operation once it has received 𝑓 + 1 WriteReply messages.

Takeaways. Fault tolerance is ensured when at most 𝑓

out of 2𝑓 + 1 replicas fail; every GET and PUT only needs
responses from 𝑓 +1 replicas to make progress. Linearizability
is ensured because the tag observed or constructed by an
operation is at least as large as the tag stored at 𝑓 + 1 replicas.
This is larger than the tag of any operation that previously
completed because a complete operation propagates its tag
to 𝑓 + 1 replicas and these two sets of 𝑓 + 1 replicas must
intersect. All operations take two rounds of communication
from the coordinating process to 𝑓 + 1 replicas.

7.2 Block Store with Standard RDMA

In principle, multi-writer ABD seems amenable to an imple-
mentation that uses standard RDMA READ, WRITE, and CAS.
A client reads the values and tags of a block, performs a local
decision, and writes back new values and tags to replicas.
The key challenge is in ensuring that these reads and writes
happen atomically with respect to each other when multiple
clients concurrently access the same block.

Existing work has also made this observation in the context
of unreplicated storage [6, 43, 44]. In the DrTM family of
systems [44], locks are used to mediate concurrent accesses
to shared objects. A DrTM client may only read or write an
object once it acquires the object’s lock via a CAS. Once the
client acquires the lock, it may read or write the object in
place knowing that no other clients can concurrently write.

Our baseline that uses standard RDMA adapts this protocol
in the context of multi-writer ABD. We assume that each
block is of fixed size so that data may be stored in place.

The data for a block is stored in a known location. The first
8 bytes are the lock that holds the identifier of the client that
currently has exclusive access to the block. The next 8 bytes
are the tag 𝑡 of the block. The remaining bytes are the value
𝑣 .

Read Phase. Before a client reads the value and tag of
the block from a replica, it acquires the lock at a majority of
replicas by performing a CAS at each replica where its own
identifier is swapped with lock only if the current value of
lock is 0. Once a client succeeds in acquiring the lock at a
majority, it reads 𝑡 and 𝑣 with a single READ. The rest of the
read phase is performed locally at the client once it acquires
locks and reads the tags and values from 𝑓 + 1 replicas. If the
client fails to acquire the lock at a majority, it releases any
locks it acquired and retries after a backoff period.

Write Phase. The client determines the tag 𝑡 ′ and value 𝑣 ′

to propagate locally. Then, it performs a WRITE of this data to
each replica on which it has acquired a lock. When the writes
are acknowledged by 𝑓 + 1 replicas, the client releases all
locks that it owns with a CAS by swapping 0 with lock only if
the current value of lock is the client’s identifier.

Discussion. As we will see in the evaluation, using stan-
dard RDMA imposes a significant performance penalty: it

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

.

tag0
addr0
tag1
addr1

v0
tag0

tag1
v1

Metadata Buffers

.

.

Figure 5. Layout of block data in memory for PRISM-RS.
The addresses in the metadata array point to buffers registered
for use with WRITE-ALLOCATE.

adds two additional round trips per GET/PUT for the CAS.
Moreover, lock contention may delay operations.

There are additional issues with using this approach. There
must be a protocol to force release locks if a client fails part
way through an operation. Also, the system may enter a live-
locked state if more than two clients attempt to acquire a lock
for the same block from a majority or replicas. Furthermore,
if replicas fail part way through an operation, clients must
acquire additional locks at the remaining replicas.

7.3 PRISM-RS Design

The PRISM primitives enable an efficient implementation of
the multi-writer ABD in RDMA. The ALLOCATE primitive
and indirection allow multiple clients to write data to and
read data from the same block atomically The CAS primitive
guarantees that ordering updates at replicas takes a single
round trip from clients even under contention.

PRISM-RS maintains an array of metadata in a known
memory location. The array element at index 𝑖 contains the
metadata for block 𝑖: the tag tag𝑖 and address addr𝑖 . The tag𝑖
is the version of block 𝑖 that the replica currently stores and
addr𝑖 is a pointer to a memory location that contains (1) the
same tag𝑖 and (2) the corresponding value. For simplicity, we
assume fixed-size blocks, but it can be extended to variable-
sized blocks by adding a len𝑖 metadata field as in PRISM-KV.

An unusual feature of this representation is that the tag is
intentionally duplicated in both the metadata array and the
buffer it references. This ensures that (1) it is possible to
read both the tag and value atomically with a single indirect
READ to addr𝑖 , and (2) that it is possible to make an update
conditional on the current tag by performing a CAS on the
⟨tag𝑖 , addri⟩ pair in the metadata array.

Read Phase. A client reads the value and tag of block 𝑖

from each replica by performing a READ of the metadata
array at the location where addr𝑖 is stored with the indirect
bit set. Following the ABD protocol, it waits for responses
from 𝑓 + 1 replicas and determines the maximum tag and
associated value.

Write Phase. After the client chooses a new tag 𝑡 ′ and
value 𝑣 ′ to propagate, it updates the replicas using a chain of

PRISM primitives. Each (except the first) has the conditional
bit set:

1. WRITE 𝑡 ′ to a temporary location tmp.
2. ALLOCATE and write 𝑡 ′ |𝑣 ′ to a new buffer, redirecting

the output address to a temporary location tmp_addr
immediately following the tag at tmp (i.e., redirect to
tmp + sizeof(𝑡 ′)).

3. CAS with the indirect bit set. The CAS target address is
the metadata array at the location where tag𝑖 |addr𝑖
is stored; the comparand is tmp. The CAS_GT compar-
ison is used and the bitmasks configured so that the tag
and address stored at tmp are written only if 𝑡 ′ > tag𝑖 .

The client waits for acknowledgments to the CAS at 𝑓 + 1
replicas before completing. Note that the CAS operation re-
turns the old value of tag𝑖 |addr𝑖 . Since addr𝑖 is no longer
in use, the client asynchronously notifies the replica so that
the buffer can be returned to the free list.

Correctness. While the correctness of the protocol gener-
ally follows from the correctness of the MRMW ABD proto-
col itself [25], some attention to the atomicity of concurrent
PRISM READs, WRITEs, and other operations is required.
First, at any moment, both copies of the tag are consistent
with each other and the value, because the CAS operation
in the write phase atomically updates both the pointer and
the tag in the metadata block. Second, in the read phase, the
tag and value read from each node are guaranteed to be con-
sistent with each other because they are stored together in
a block that is never modified once it is ALLOCATEd and
written to for the first time. This use of write-once, out-of-
place updates avoids issues with concurrent writes, without
the checksums or self-certifying data structures needed by
other systems [31].

7.4 Evaluation

We compare PRISM-RS with the one-sided lock-based ABD
variant described above (ABDLOCK, §7.2). As before, we
also compare against ABDLOCK using the same software
RDMA implementation as PRISM. We use 8 million 512-byte
objects, replicated on 3 servers, and a 50% write workload.

On a uniform access distribution (Figure 6) where there is
low contention, PRISM-RS outperforms even the one-sided
RDMA ABDLOCK variant in both latency and throughput.
The lower message complexity enabled by the PRISM prim-
itives allows PRISM-RS to be about 2 𝜇s faster than ABD-
LOCK and reach ∼ 4 million more ops/sec before saturating
the network. The benefits are even more dramatic on work-
loads where there is contention on popular keys. Figure 7 con-
siders a workload where 100 closed-loop clients access keys
with a Zipf distribution. PRISM-RS remains as responsive for
any contention level, while the performance of ABDLOCK
degrades significantly due to lock contention.

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

 0

 20

 40

 60

 80

 100

 120

 140

0M 2M 4M 6M 8M 10M 12M 14M

L
at

en
cy

 (
µ

s)

Throughput (txns/s)

ABDLOCK
ABDLOCK (software RDMA)

PRISM-RS

Figure 6. Throughput-latency comparison between PRISM-
RS and the two variants of lock-based ABD.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1 1.2

L
at

en
cy

 (
µ

s)

Zipf coefficient

ADBLOCK PRISM-RS

Figure 7. Latency comparison between PRISM-RS and ABD-
LOCK for various degrees of contention.

8 PRISM-TX: Distributed Transactions
We next move to the problem of providing distributed trans-
actional storage. Specifically, we consider a storage system
where data is partitioned among multiple servers, and clients
group operations into transactions. During the execution phase
of a transaction, they read or write data from different servers.
Subsequently, clients request to commit a transaction, and the
system either commits it atomically or aborts it. All commit-
ted transactions are serializable. Providing these transactional
semantics has long been a classic problem for distributed
databases [5]; more recent systems have used RDMA to ac-
celerate transactional storage [6, 10, 19, 43, 44].

8.1 Background: FaRM

FaRM is a representative example of the state of the art in
transaction processing over RDMA [10]. In FaRM, data is
stored in a hash table that is accessible via RDMA and each
object is associated with a version number and a lock. Dur-
ing the execution of a transaction, clients perform reads by
accessing server memory using one-sided RDMA READ op-
erations, and buffer writes locally until the commit phase. For
the key-value store variant of FaRM, each access can require
two READs, as in Pilaf. The commit process is a three-phase
protocol requiring CPU involvement. Clients first lock all
objects in the write set. Once they have done so, they reread
all objects in the read set to verify that they have not been
concurrently modified. Finally, they update the objects that
have been written, and unlock them. The second phase can
be implemented using READs; the other two require RPCs.

FaRM benefits from RDMA’s low latency transport, yet it
still requires significant server CPU involvement. Although
reads are implemented using one-sided RDMA operations,
the more complex logic of the commit phase cannot be.

8.2 PRISM-TX Design

Can we build a distributed transaction protocol that imple-
ments both its execution and commit phases using remote
operations? Using PRISM’s new primitives, notably the en-
hanced CAS operation, we implement optimistic concurrency
control checks in a protocol called PRISM-TX.

The design of PRISM-TX draws inspiration from Meerkat [38],
a recent distributed optimistic concurrency control protocol.
Meerkat serves as an excellent starting point for our PRISM-
TX design, because it partitions concurrency control metadata
by key, augmenting a hash table with additional metadata for
each object (in contrast to traditional OCC designs that main-
tain and scan lists of active transactions [21]). While Meerkat
uses this to avoid multi-core bottlenecks, we leverage it to
provide remote access: the OCC metadata is stored in well-
defined, per-key locations.

In PRISM-TX, as in Meerkat, each transaction has a times-
tamp. These timestamps are selected at the client using a
loosely synchronized clock, a strategy used in many prior
systems [1, 8, 38, 40, 46]. Clients execute reads using RDMA
operations, and buffer writes locally. To commit a transac-
tion requires two phases. First, in the prepare phase, a client
checks whether a conflicting transaction has prepared or com-
mitted, and records its intent to commit. It does so by updating
timestamps associated with the records it read and wrote us-
ing PRISM’s CAS operation. If this succeeds, it then commits
the transaction by installing its writes.

Memory layout. PRISM-TX builds on both PRISM-KV
and PRISM-RS. Like PRISM-KV, data is arranged in a hash
table at each server and keys are accessed by probing for the
correct hash table slot. Like PRISM-RS, each slot contains
concurrency control metadata and a pointer to the location
where committed data is stored. Figure 8 depicts the hash
table and metadata. In particular, for each key, the following
information is maintained:

PR – the timestamp of the most recent transaction that
read the key and has prepared to commit.
PW – the timestamp of the most recent transaction that
needs to write the key and has prepared to commit.
C – the timestamp of the most recent committed trans-
action that wrote this key.

Execution phase. The client executes the transaction by
performing its reads using a mechanism similar to PRISM-
KV’s GETS (§6.1) at the corresponding partition servers, and
by buffering its writes. The execution phase results in a Read-
Set, a set containing a tuple ⟨key, RC⟩ for every key the
transaction read, where RC is the version of the key (i.e., its
value of C) that was read, and a WriteSet, a set containing

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

.

PW0
PR0
C0

addr0

key0
C0

key1
v1

C1

Metadata Buffers

..

PW1
PR1
C1

addr1

v0

Figure 8. Memory layout for PRISM-TX. The addresses in
the metadata array point to buffers registered for use with
ALLOCATE.

a tuple ⟨key, value⟩ for every key the transaction needs to
write.

Prepare phase. After the execution phase, the client se-
lects a logical commit timestamp TS for the transaction us-
ing loosely synchronized logical clocks [1, 40], in the same
way as Meerkat: it chooses a tuple ⟨clock_time, cid⟩. The
clock_time is initially set to the local clock time of the client,
but it is adjusted such that TS > RC for all RCs of the read
keys. cid is the client’s id, appended to ensure timestamps are
unique.

The client then performs a series of validation checks to
establish if the transaction can be ordered at TS. For every key
in the ReadSet, the client performs a read validation check: it
checks that no concurrent transaction has prepared to write to
that key, i.e., the transaction read the latest version. If not, it
updates PR to record its read and block conflicting writes:

• Read Validation: for each key 𝑖,RC in ReadSet,
if RC = PW𝑖 , update PR𝑖 = max(𝑇𝑆, 𝑃𝑅𝑖)

Note that the condition is equivalent to RC ≥ PW, because
PW never decreases and is always larger than C. As a result,
this can be expressed as a single CAS operation that checks
if RC|TS is greater than PW|PR (where | is the concatenation
of the two values). This performs the update atomically. The
CAS can fail if the check fails (RC < PW) or if the update was
unnecessary (PR was already greater than TS); the client can
distinguish the two using the value returned by the CAS.

If all read validation checks succeed, the client moves on
to validate the writes. For every key in the WriteSet, the client
performs a write validation check: it checks that writing this
key at TS does not invalidate concurrent reads (transactions
that read might appear not to have read the latest version). It
does so by checking that TS > PR. The client also checks that
it is the most recent write by checking that TS > PW.

• Write Validation: for each key 𝑖 in WriteSet,
if TS > PR𝑖 and TS > PW𝑖 , update PW𝑖 = TS.

This cannot be performed as a single CAS operation. However,
note that the update does not need to be performed atomically

with both conditions; it suffices for it to be performed atomi-
cally with the second condition, as long as the first condition
is checked after. Intuitively, this is because it is always safe
to increment PW, as this only prevents concurrent readers
from committing. In other words, it is safe to optimistically
record the transaction’s intent to write the key (even if it does
not ultimately succeed). Doing so may cause unnecessary
aborts, but does not violate correctness. Thus, PRISM-TX
performs the TS > PW check and updates PW = TS with
a CAS operation, then if it succeeds, separately checks that
TS > PR.

Commit phase. If all validation checks are successful,
the client commits the transaction and applies each write
⟨key, value⟩ in WriteSet using a sequence of PRISM prim-
itives. It follows the same ALLOCATE/WRITE/CAS pattern
in PRISM-RS’s write phase (§7.3), allocating a new buffer
containing TS | key | value and installing a pointer to it in the
appropriate slot as long as TS > C𝑖 .

If any validation check fails, the client aborts the transac-
tion. Typical transaction protocols (including Meerkat) would
then undo the metadata updates during the prepare phase;
PRISM-TX cannot do this because it tracks only the latest
timestamps for PR and PW. Instead, it leaves these times-
tamps as is. As noted above, it is always safe to use a higher
(i.e., conservative) value for PR and PW. However, this can
block other transactions from committing. To reduce this ef-
fect, the client updates C to TS if TS > C, for every key it
successfully completed the write check for.

Correctness. PRISM-TX ensures serializability: transac-
tions appear to execute in timestamp order. We cannot provide
a detailed proof due to space constraints, but note that the
proof follows as an extension of Meerkat’s protocol [38].
Intuitively, PRISM-TX prevents anomalies by forbidding a
transaction 𝑇 from committing if any transaction with an
earlier timestamp modified the data 𝑇 read, or if any trans-
action with a later timestamp read or modified the earlier
version of data 𝑇 modified. PRISM-TX follows essentially
the same timestamp assignment and validation protocol as
Meerkat, except PRISM-TX’s read and write validation rules
are strictly more conservative than the ones used in Meerkat,
as Meerkat tracks the full list of prepared transactions that
read or wrote a key. PRISM-TX tracks only the highest times-
tamps of prepared transactions that read (PR) or modified
(PW) a key.

8.3 Evaluation

We compare PRISM-TX with our implementation of the
FaRM protocol, again using both hardware and software
RDMA implementations for FaRM. Due to the limited size
of our testbed, we use only a single shard (but still run the full
distributed commit protocol). We use a YCSB-T [9] work-
load, consisting of short read-modify-write transactions, with
8 million 512-byte objects. Figure 9 shows the performance

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

 0

 20

 40

 60

 80

 100

 120

0M 1M 2M 3M 4M 5M 6M

L
at

en
cy

 (
µ

s)

Throughput (txns/s)

FARM
FaRM (software RDMA)

PRISM-TX

Figure 9. Throughput-latency comparison between PRISM-
TX and FaRM for YCSB-T workload with low contention.

0M

1M

2M

3M

4M

5M

6M

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

T
h

ro
u

g
h
p

u
t

(t
x

n
s/

s)

Zipf coefficient

FaRM
FaRM (software RDMA)

PRISM-TX

Figure 10. Peak throughput comparison between PRISM-TX
and FaRM for YCSB-T workload with varying contention.

results for YCSB-T using a uniform access pattern. PRISM-
TX outperforms FaRM in both latency and throughput. With a
lower message complexity, enabled by the PRISM primitives,
PRISM-TX is 5.5 𝜇s faster than FaRM and reaches 1 million
more transactions per second before saturating the network.

Because PRISM-TX uses a different concurrency control
protocol, the performance tradeoff may vary with different
workloads. Optimistic protocols can suffer under high con-
tention. Figure 10 evaluates the peak throughput under differ-
ent levels of workload skew (Zipf distributions). PRISM-TX
maintains its performance benefit under high contention.

9 Related Work
RDMA Systems. Many storage systems have been built

around the RDMA interface; we do not aim to provide a com-
plete list, but merely to highlight relevant trends. Pilaf [31]’s
hash table uses indirection, so it requires two reads to perform
a GET, and uses a RPC for a PUT. Cell [32] implements a
B-tree, which requires even more round trips to perform a
read (though caching can be effective). XStore [42] replaces
the tree with a learned index structure to search with fewer
RDMA reads, but still requires indirection. PRISM’s indi-
rection primitives can help many of these systems. Among
transaction systems, FaRM [10] uses RDMA to read data,
but RPCs to commit updates. DrTM builds a lock-based pro-
tocol [44] from one-sided operations. PRISM broadens the
design space by enabling one-sided OCC protocols.

Other work argues that two-sided RPCs can outperform
one-sided RDMA operations. HERD [17] eschews one-sided
reads for a mix of one-sided writes and two-sided operations,

and FaSST [19] implements transactions using a RPC mecha-
nism. DrTM+H[43] improves DrTM’s performance using a
hybrid one-sided/two-sided approach. Octopus uses a similar
hybrid approach for a file system [24]. PRISM, by offering
more complex remote operations, offers a middle ground.

RDMA Extensions. Implementers have occasionally de-
fined new extensions to the RDMA model. Mellanox’s ex-
tended atomics API [30] allows CAS operations to compare
and swap on parts of a larger operand vs. one 8-byte value.
Snap’s software RDMA stack [26] supports indirect opera-
tions as well as a pattern-search primitive, and these are used
within Google, though not publicly described in detail. Sim-
ple primitives for far-memory data structures [2] have also
been proposed, including indirect addressing.

StRoM [37] and RMC [3] propose to allow applications to
install their own one-off primitives on FPGA and multi-core
NICs respectively. This shares our goal of adding server-side
processing to avoid extra network round trips – and indeed
supports more complex server-side processing. However, as
discussed in §2.3, running custom application logic presents
deployment challenges, and supporting a small library of
generic primitives affords more implementation possibilities.
PRISM demonstrates that such an API can be useful.

HyperLoop [20] implements a different form of chaining
than PRISM: it shows that, with a specially crafted RDMA
request, a sender can cause a receiver to initiate a RDMA
request to a third machine. This could be used in combination
with PRISM to implement other communication patterns.
RedN [36] takes this approach further, using self-modifying
RDMA chains as Turing machines, a potential approach to
implementing PRISM primitives on existing hardware.

10 Conclusion
We have presented PRISM, an extended API for access to
remote memory. PRISM offers a middle ground between
the RDMA READ/WRITE interface and the full generality
of RPC communication. PRISM significantly expands the
design space for network-accelerated applications, making
it possible to build new types of applications with minimal
server-side CPU involvement – as demonstrated by our key-
value store, replicated storage, and distributed transaction
examples.

Using a software implementation of PRISM, we showed
that the more advanced interface allows building more effi-
cient protocols – often outperforming ones that use hardware-
accelerated RDMA. Looking forward, a hardware implemen-
tation of PRISM is feasible and would permit even higher
performance with better CPU efficiency – enabling new de-
ployment options such as network-attached memory nodes.

Acknowledgments
We thank Lorenzo Alvisi and Anirudh Badam, along with the
anonymous reviewers from OSDI and SOSP and our shepherd
Amin Vahdat, for their valuable feedback.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Burke et al.

References
[1] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari.

1995. Efficient Optimistic Concurrency Control Using Loosely Syn-
chronized Clocks. In Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data. ACM, San Jose, CA,
USA.

[2] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad
Singhal. 2019. Designing Far Memory Data Structures: Think Outside
the Box. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS).

[3] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishna-
murthy, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2020.
Remote Memory Calls. In Proceedings of the 16th Workshop on Hot
Topics in Networks (HotNets ’20). ACM, Chicago, IL, USA.

[4] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1990. Sharing memory
robustly in message-passing systems. In Proceedings of the 9th ACM
Symposium on Principles of Distributed Computing (PODC ’90). ACM,
Quebec City, QC, Canada.

[5] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Con-
currency Control and Recovery in Database Systems. Addison-Wesley.

[6] Yanzhe Chen, Xinda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and General Distributed Transactions Using RDMA and
HTM. In Proceedings of the 11th ACM SIGOPS EuroSys (EuroSys ’16).
ACM, London, United Kingdom.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of SOCC 2010.

[8] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-
thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. 2012. Spanner: Google’s Globally-Distributed Data-
base. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12). USENIX, Hollywood,
CA, USA.

[9] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Rohm. 2014.
YCSB+T: Benchmarking web-scale transactional databases. In Pro-
ceedings of the 30th International Conference on Data Engineering
Workshops (ICDEW).

[10] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast Remote Memory. In Proceedings
of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’14). USENIX, Seattle, WA, USA.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google File System. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03). ACM, Bolton Landing, NY,
USA.

[12] Chuanxiong Guo. 2017. RDMA in Data Centers: Looking Back and
Looking Forward. Keynote at APNet.

[13] Chuanxiong Guo, Haitao Wu, Zhong Deng, Jianxi Ye Gaurav Soni,
Jitendra Padhye, and Marina Lipshteyn. 2016. RDMA over Commodity
Ethernet at Scale. In Proceedings of ACM SIGCOMM 2016. ACM,
Florianopolis, Brazil.

[14] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano,
Weijia Song, Edward Tremel, Robbert van Renesse, Sydney Zink, and
Kenneth P. Birman. 2019. Derecho: Fast State Machine Replication for
Cloud Services. ACM Trans. Comput. Syst. 36, 2 (2019), 4:1–4:49.

[15] Jithin Jose, Hari Subramoni, Krishna Kandalla, Md. Wasi-ur Rahman,
Hao Wang, Sundeep Narravula, and Dhabaleswar K. Panda. 2012.
Scalable Memcached Design for InfiniBand Clusters Using Hybrid
Transports. In Proceedings of the 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid 2012). IEEE,

Ottawa, ON, Canada.
[16] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter

RPCs can be general and fast. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’19). USENIX, Boston, MA, USA.

[17] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA Efficiently for Key-Value Services. In Proceedings of ACM
SIGCOMM 2014. ACM, Chicago, IL, USA.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of
the 2016 USENIX Annual Technical Conference. USENIX, Denver,
CO, USA.

[19] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI ’16).
USENIX, Savannah, GA, USA.

[20] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson,
Vyas Sekar, and Srinivasan Seshan. 2018. Hyperloop: group-based NIC-
offloading to accelerate replicated transactions in multi-tenant storage
systems. In Proceedings of ACM SIGCOMM 2018. ACM, Budapest,
Hungary.

[21] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for
Concurrency Control. ACM Transactions on Database Systems 6, 2
(June 1981), 213–226.

[22] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and
Aditya Akella. 2020. PANIC: A High-Performance Programmable
NIC for Multi-tenant Networks. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’20). USENIX, Banff, AL, Canada.

[23] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. 2019. Offloading distributed applications
onto SmartNICs using iPipe. In Proceedings of ACM SIGCOMM 2019.
ACM, Beijing, China.

[24] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus:
an RDMA-enabled distributed persistent memory file system. In Pro-
ceedings of the 2017 USENIX Annual Technical Conference. USENIX,
Santa Clara, CA, USA.

[25] Nancy Lynch and Alex Shvartsman. 1997. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In Proceed-
ings of the 27th Annual International Symposium on Fault-Tolerant
Computing (FTCS’ 97). IEEE, Seattle, WA, USA, 272–281.

[26] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). ACM, Shanghai, China.

[27] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger,
Rusty Russell, Dipankar Sarma, and Maneesh Soni. 2002. Read-Copy
Update. In Proceedings of the 2002 Ottawa Linux Symposium. Ottawa,
ON, CA, 336–367.

[28] Mellanox Technologies. [n.d.]. ConnectX Ethernet Adapters. https:
//www.mellanox.com/products/ethernet/connectx-smartnic.

[29] Mellanox Technologies. [n.d.]. RDMA Extended Atomics. https://
docs.mellanox.com/display/rdmacore50/Extended%20Atomics.

[30] Mellanox Technologies 2015. RDMA Aware Networks Programming
User Manual. Mellanox Technologies. Revision 1.7.

[31] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
sided RDMA Reads to Build a Fast, CPU-efficient Key-value Store.
In Proceedings of the 2013 USENIX Annual Technical Conference.

https://www.mellanox.com/products/ethernet/connectx-smartnic
https://www.mellanox.com/products/ethernet/connectx-smartnic
https://docs.mellanox.com/display/rdmacore50/Extended%20Atomics
https://docs.mellanox.com/display/rdmacore50/Extended%20Atomics

PRISM: Rethinking the RDMA Interface for Distributed Systems SOSP ’21, October 26–29, 2021, Virtual Event, Germany

USENIX, San Jose, CA, USA.
[32] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha

Sen, and Jinyang Li. 2016. Balancing CPU and Network in the Cell
Distributed B-Tree Store. In Proceedings of the 2016 USENIX Annual
Technical Conference. USENIX, Denver, CO, USA.

[33] S. Narravula, A. Marnidala, A. Vishnu, K. Vaidyanathan, and D. K.
Panda. 2007. High Performance Distributed Lock Management Ser-
vices using Network-based Remote Atomic Operations. In Proceedings
of the 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2007). IEEE, Rio de Janeiro, Brazil.

[34] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-Tolerant Soft-
ware Distributed Shared Memory. In Proceedings of the 2015 USENIX
Annual Technical Conference. USENIX, Santa Clara, CA, USA.

[35] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. 2018. Understanding
PCIe Performance for End Host Networking. In Proceedings of the
2018 ACM SIGCOMM (Budapest, Hungary).

[36] Waleed Reda, Marco Canini, Dejan Kostić, and Simon Peter. 2022.
RDMA is Turing complete, we just did not know it yet!. In Proceedings
of NSDI ’22.

[37] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo
Alonso. 2020. StRoM: Smart Remote Memory. In Proceedings of the
15th ACM SIGOPS EuroSys (EuroSys ’20). ACM, Heraklion, Crete,
Greece.

[38] Adriana Szekeres, Michael Whittaker, Naveen Kr. Sharma, Jialin
Li, Arvind Krishnamurthy, Irene Zhang, and Dan R. K. Ports.
2020. Meerkat: Scalable Replicated Transactions Following the Zero-
Coordination Principle. In Proceedings of the 15th ACM SIGOPS Eu-
roSys (EuroSys ’20). ACM, Heraklion, Crete, Greece.

[39] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. 1997.
Frangipani: A Scalable Distributed File System. In Proceedings of the

16th ACM Symposium on Operating Systems Principles (SOSP ’97).
ACM, Saint-Malo, France.

[40] Robert H. Thomas. 1979. A Majority Consensus Approach to Con-
currency Control for Multiple Copy Databases. ACM Transactions on
Database Systems 4, 2 (June 1979), 180–209.

[41] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan
R. K. Ports, and Aurojit Panda. 2020. Multitenancy for fast and pro-
grammable networks in the cloud. In Proceedings of the 11th Hot Topics
in Cloud Computing (HotCloud ’20). Boston, MA, USA.

[42] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based
Ordered Key-Value Store using Remote Learned Cache. In Proceedings
of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’20). USENIX, Banff, AL, Canada.

[43] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Decon-
structing RDMA-enabled Distributed Transactions: Hybrid is Better!.
In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’18). USENIX, Carlsbad, CA USA.

[44] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast In-memory Transaction Processing using RDMA and HTM.
In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP ’15). ACM, Monterey, CA, USA.

[45] Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. 2018.
Distributed Lock Management with RDMA: Decentralization without
Starvation. In Proceedings of the 2018 ACM SIGMOD International
Conference on Management of Data. ACM, Houston, TX, USA.

[46] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-
murthy, and Dan R. K. Ports. 2015. Building Consistent Transactions
with Inconsistent Replication. In Proceedings of the 25th ACM Sympo-
sium on Operating Systems Principles (SOSP ’15). ACM, Monterey,
CA, USA.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RPCs vs Memory Accesses: The RDMA Dilemma
	2.2 Principles for Post-RDMA Systems
	2.3 The Case for an Extended Interface

	3 PRISM Interface
	3.1 Indirect Operations
	3.2 Memory Allocation
	3.3 Enhanced Compare-And-Swap
	3.4 Operation Chaining
	3.5 Discussion

	4 PRISM Implementation
	4.1 Software PRISM Implementation
	4.2 Hardware NIC Feasibility
	4.3 Performance Analysis

	5 Applications Overview
	6 PRISM-KV: Key-Value Storage
	6.1 PRISM-KV Design
	6.2 Evaluation

	7 PRISM-RS: Replicated Block Storage
	7.1 Background: ABD
	7.2 Block Store with Standard RDMA
	7.3 PRISM-RS Design
	7.4 Evaluation

	8 PRISM-TX: Distributed Transactions
	8.1 Background: FaRM
	8.2 PRISM-TX Design
	8.3 Evaluation

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

