
Claret: Using Data Types for Highly

Concurrent Distributed Transactions

Brandon Holt Irene Zhang Dan Ports Mark Oskin Luis Ceze

University of Washington

{bholt,iyzhang,drkp,oskin,luisceze}@cs.washington.edu

Abstract

Out of the many NoSQL databases in use today, some that

provide simple data structures for records, such as Redis

and MongoDB, are now becoming popular. Building appli-

cations out of these complex data types provides a way to

communicate intent to the database system without sacrific-

ing flexibility or committing to a fixed schema. Currently

this capability is leveraged in limited ways, such as to ensure

related values are co-located, or for atomic updates. There

are many ways data types can be used to make databases

more efficient that are not yet being exploited.

We explore several ways of leveraging abstract data type

(ADT) semantics in databases, focusing primarily on com-

mutativity. Using a Twitter clone as a case study, we show

that using commutativity can reduce transaction abort rates

for high-contention, update-heavy workloads that arise in

real social networks. We conclude that ADTs are a good

abstraction for database records, providing a safe and ex-

pressive programming model with ample opportunities for

optimization, making databases more safe and scalable.

1. Introduction

The move to non-relational (NoSQL) databases was moti-

vated by a desire for scalability and flexibility. People found

that by giving up strong consistency, they could better scale

services to millions or billions of users while meeting tight

performance goals. Because of inherent uncertainty in tim-

ing and connectivity, in many cases users are likely to ac-

cept minor inconsistencies such as two tweets being out of

temporal order or needing to retry an action. In such cases,

relaxed consistency feels like a natural solution, but it leaves

much to chance: there is likely no guarantee that more sig-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PaPoC’15, April 21, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745951

nificant inconsistencies are impossible. When consistency is

critical, developers can enforce stronger guarantees manu-

ally, or use serializable transactions in systems like Google’s

Spanner [4], but this leaves them with two extremes with a

significant performance gap. If certain parts of an application

can tolerate imprecision, why not capture those properties in

the programming model? Is there a way programmers can

express the semantics they desire succinctly and precisely,

helping the database optimize performance and scalability,

without sacrificing flexibility?

We propose abstract data types (ADTs) as the solution.

Rather than limiting the records in databases to primitive

types like strings or integers, raising them to more complex

data types provides a richer interface, exposing ample op-

portunities for optimization to the database and a precise

mechanism to express the intentions of programmers. In this

work we explore several ways of leveraging commutativity

and data types to improve database performance and allow

programmers to make tradeoffs between performance and

precision, starting by demonstrating one way of using com-

mutativity to reduce transaction aborts.

2. Commutativity

Commutativity is well known, especially in distributed sys-

tems, for enabling important optimizations. Since the 80s,

commutativity has been exploited by database systems de-

signers [7, 19] within the safe confines of relational models,

where complete control of the data structures allows sys-

tems to determine when transactions may conflict. Recently,

commutativity has seen a resurgence in systems without a

predefined data model, such as NoSQL databases and trans-

actional memory. Eventually consistent databases use com-

mutativity for convergence in work such as RedBlue consis-

tency [14] and conflict-free replicated data types (CRDTs)

[17]. Other systems specialize for commutative operations to

improve transaction processing, such as Lynx [21] for track-

ing serializability, Doppel [15] for executing operations in

parallel on highly contended records, and HyFlow [12] for

reordering operations in the context of distributed transac-

tional memory. We propose unifying and generalizing these

under the abstraction afforded by ADTs.

method: commutes with: when:

add(x): void add(y) ∀x, y
remove(x): void remove(y) ∀x, y

add(y) x 6= y
size(): int add(x) x ∈ Set

remove(x) x /∈ Set
contains(x): bool add(y) x 6= y ∨ y ∈ Set

remove(y) x 6= y ∨ y /∈ Set
size() ∀x

Table 1: Commutativity Specification for Set.

Though commutativity is often discussed in terms of an

operation commuting with all other operations, it is actually

more nuanced. If a pair of operations commute, then execut-

ing them in either order will produce the same result. Using

the definitions from [13], whether or not a pair of method

invocations commute is a function of the methods, their ar-

guments, their return values, and the abstract state of their

target. We call the full set of commutativity rules for an ADT

its commutativity specification. An example specification for

a Set is shown in Table 1. There are actually many valid spec-

ifications which expose less than the maximum commutativ-

ity, but may be cheaper to implement.

Transaction boosting. If two operations on the same

record in two different transactions commute, then the trans-

actions can safely execute concurrently, even though they

both update the record. This technique is known as transac-

tional boosting [11]. This straightforward use of commuta-

tivity was shown to significantly improve abort rates in soft-

ware transactional memory. In §4, we show how we applied

it to distributed transactions.

Combining. Associativity, often paired with commuta-

tivity, allows some concurrent operations to be combined

before being applied to the data structure itself. Combining

[10, 18, 20] can drastically reduce contention on shared data

structures. This technique could be applied to hot records,

similar to splitting in Doppel [15], to avoid bottlenecking on

a single shard.

3. Data type selection

Choosing an ADT with semantics specialized for a particular

use case gives the system the best chance of scaling perfor-

mance. For example, rather than using a counter, which must

return the next number in the sequence (which is difficult to

scale, as users of TPC-C [6] know well) For example, an ap-

plication needing to generate unique IDs should not use a

counter, which must return the next number in the sequence,

because this is very difficult to scale (as users of TPC-C

[6], which explicitly requires this, know well). Instead, a

UniqueID type succinctly expresses that non-sequential IDs

are okay, which can be implemented very efficiently. By

allowing approximations or non-determinism, performance

may be further improved.

Probabilistic data types such as bloom filters [2], hy-

perloglogs [8], and count-min sketches [5] trade off accu-

racy (within fixed bounds) for better performance or storage.

Twitter’s streaming analytics system [3] and many machine

learning algorithms leverage these to handle high data vol-

ume, and we expect similar benefit.

Conflict-free replicated data types (CRDTs), which

were invented for eventual consistency, can actually be fit

into our model as well, as a new kind of data type. Copies

of a record could exist in different shards, asynchronously

updating each other. By defining the same kind of merge

function as traditional CRDTs, these copies could ensure

they all converge to the same state. Clients may find them

more difficult to reason about but might make that tradeoff

in parts of the application where it otherwise cannot scale.

4. Evaluation

To demonstrate the efficacy of leveraging commutative oper-

ations in transactions, we built a simple prototype key-value

store, modeled after Redis, that supports complex data types

for records, each with their own set of operations. Our ex-

periments were carried out with 4 shards on 4 local nodes,

each with 8-core 2GHz Xeon E5335 processors and standard

ethernet connecting them.

4.1 Transaction protocol

The transaction protocol employs standard two-phase com-

mit and two-phase locking with retries to ensure isolation,

atomicity. We implement a number of standard optimiza-

tions, such as delaying acquiring locks for operations that

don’t return a value to the prepare step so that locks are held

for as short a time as possible. However, there is one step

that is non-standard in order to support complex data types

where rolling back state changes would be non-trivial.

To support transactions with arbitrary data structure oper-

ations, each operation is split into two steps: stage and apply.

During transaction execution, each operation’s stage method

attempts to acquire the necessary lock and may return a value

as if the operation has completed (e.g. an “increment” spec-

ulatively returns the incremented value). When the transac-

tion is prepared to commit, apply is called on each staged

operation to actually mutate the underlying data structure.

This allows operations to easily be un-staged if the transac-

tion fails to acquire all the necessary locks, without requiring

rollbacks.

Commutativity comes into play in the locking scheme.

Using the algorithms from [13] and our commutativity spec-

ifications, we design an abstract lock for each record type.

Our SortedSet, for instance, has an add mode which allows

all insertion operations to commute, but disallows operations

like contains or size. As a baseline, we implement a stan-

dard reader/writer locking scheme that allows all read-only

operations to execute concurrently, but enforces that only

one transaction may modify a record at a time.

50% read
50% update

90% read
10% update

0

10

20

30

40

0

10

20

30

40

U
n

ifo
rm

Z
ip

f: 0
.6

4 8 16 32 48 64 4 8 16 32 48 64

Concurrent clients

T
h

ro
u

g
h

p
u

t
(k

/s
e

c
)

Concurrency
control:

commutative reader/writer

Figure 1: Throughput of raw Set operations.

4.2 Microbenchmark: Set operations

We first evaluate performance with a simple workload con-

sisting of a raw mix of Set operations randomly distributed

over 10,000 keys. We use both a uniform random distribu-

tion as well as a skewed Zipfian distribution with a coeffi-

cient of 0.6. In Figure 1, we see that commutative transac-

tions perform strictly better, showing the most pronounced

benefit over the more update-heavy, skewed workload.

4.3 Case study: Retwis

To understand performance on a typical web workload, we

use Retwis, a simplified Twitter clone designed originally for

Redis [16]. Data structures such as sets are used track each

user’s followers and posts and keep a materialized up-to-date

timeline for each user (represented as a sorted set). On top

of Retwis’s basic functionality, we added a “repost” action

that behaves like Twitter’s “retweet”.

We simulate a realistic workload using a synthetic graph

with power-law degree distribution and clients that ran-

domly select between Retwis transactions including “add

follower”, “new post”, and “repost”, executing them as fast

as they can.

Rather than simply approximating the skew in real-world

workloads with a Zipfian distribution as many other systems

do, we simulate the behavior of social networks with a real-

istic synthetic graph and a simple model of user behavior for

posting and reposting.

For our synthetic graph, we use the Kronecker graph

generator from the Graph 500 benchmark [9]. This generator

is designed to result in graphs with the same power-law

degree distribution found in natural graphs. Figure 2 shows

the cumulative distribution function (CDF) of the number of

followers per user for the synthetic graph of approximately

0.1

0.5

1.0

1 10 100 1000

followers / user (log scale)

C
D

F
 (

lo
g

 s
c
a

le
)

Figure 2: CDF of the number of followers for users generated by

the Kronecker synthetic graph generator, matching the power-law

degree distribution of natural graphs.

0.1

0.2

0.4

0.6

0.8
1.0

1 10 100 1000

reposts (log scale)

C
D

F
 (

lo
g
 s

c
a
le

)

Figure 3: CDF of the number of times a post is reposted, matching

traces from real workloads. Due to the power-law graph structure,

if users tend to reposts popular recent posts on their timeline, it

results in another power-law distribution. Note that that some posts

are reposted to over a quarter of the graph (4000 total users).

4000 users, with an average number of followers of 16 (scale

12 with edgefactor of 16 in Graph500’s terms). Most users

should have relatively few followers; we see that roughly

50% have fewer than 100 followers, while a very small

number of users have over 1000 followers.

We use a simple model of user behavior to determine

when and which posts to repost. Each time we load the most

recent posts in a timeline for a random user (uniformly se-

lected), they are sorted by the number of times they have

already been reposted, and a discrete geometric distribution,

skewed toward 0, is used to select the number of these to

repost. This results in the “viral” propagation effect that is

observed in real social networks. Figure 3 shows the distri-

bution of the number of times a post was reposted, which is

again a power-law distribution. Note that a small number of

posts are reposted so much that they end up on over a quarter

of users’ timelines.

repost−heavy read−heavy

0

5

10

15

20

4 8 16 32 64 4 8 16 32 64

Concurrent clients

T
h

ro
u

g
h

p
u

t
(k

 t
ra

n
s
.

/
s
e

c
)

Concurrency
control:

commutative reader/writer

Figure 4: Throughput of social network workload (Retwis) with

4000 users. Leveraging commutativity prevents performance from

falling over even when posts spread virally (repost-heavy).

Figure 4 shows the results of this simulation. When most

of the traffic is content consumption (reading timelines),

both systems perform well enough. However, when we sim-

ulate a workload where clients repost popular posts from

their timelines, we see a viral propagation effect, where a

large fraction of the users get and share a post. As Twitter

came to a standstill when Ellen DeGeneres’s Oscar selfie set

a retweeting record [1], so too does our baseline fall over.

But with commutativity, performance continues to scale

even under this highly contentious load.

References

[1] L. Baertlein. Ellen’s Oscar ’selfie’ crashes Twitter,

breaks record. http://www.reuters.com/article/2014/03/

03/us-oscars-selfie-idUSBREA220C320140303, Mar. 2014.

[2] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 13(7):422–

426, July 1970.

[3] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird:

A Framework for Integrating Batch and Online MapReduce

Computations. Proceedings of the 40th International Confer-

ence on Very Large Data Base (VLDB 2014), 7(13), 2014.

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.

Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,

W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,

D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,

M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-

ner: Google’s globally-distributed database. In USENIX Con-

ference on Operating Systems Design and Implementation,

OSDI’12, pages 251–264, 2012.

[5] G. Cormode and S. Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. Journal

of Algorithms, 55(1):58–75, 2005.

[6] T. P. P. Council. Tpc-c. http://www.tpc.org/tpcc/.

[7] A. Fekete, N. Lynch, M. Merritt, and W. Weihl.

Commutativity-based locking for nested transactions.

Journal of Computer and System Sciences, 41(1):65–156,

Aug. 1990.

[8] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyper-

LogLog: the analysis of a near-optimal cardinality estimation

algorithm. In International Conference on Analysis of Algo-

rithms, 2007.

[9] Graph 500. http://www.graph500.org/, July 2012.

[10] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining

and the synchronization-parallelism tradeoff. In Proceedings

of the 22nd ACM Symposium on Parallelism in Algorithms

and Architectures, pages 355–364. ACM, 2010.

[11] M. Herlihy and E. Koskinen. Transactional Boosting: A

Methodology for Highly-concurrent Transactional Objects. In

Proceedings of the 13th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP ’08,

pages 207–216, 2008.

[12] J. Kim, R. Palmieri, and B. Ravindran. Enhancing Concur-

rency in Distributed Transactional Memory through Commu-

tativity. In EuroPar 2013, pages 150–161. 2013.

[13] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali.

Exploiting the Commutativity Lattice. In Conference on Pro-

gramming Language Design and Implementation, PLDI ’11,

pages 542–555, 2011.

[14] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and

R. Rodrigues. Making Geo-Replicated Systems Fast as Possi-

ble, Consistent when Necessary. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI 12),

pages 265–278, 2012.

[15] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase Rec-

onciliation for Contended In-Memory Transactions. In 11th

USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 14), pages 511–524, Broomfield, CO, Oct.

2014.

[16] S. Sanfilippo. Redis. http://redis.io/.

[17] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.

Conflict-free Replicated Data Types. In Proceedings of the

13th International Conference on Stabilization, Safety, and

Security of Distributed Systems, SSS’11, pages 386–400,

2011.

[18] N. Shavit and A. Zemach. Combining funnels: A dynamic

approach to software combining. Journal of Parallel and

Distributed Computing, 60(11):1355–1387, 2000.

[19] W. E. Weihl. Commutativity-based Concurrency Control for

Abstract Data Types. In Proceedings of the Twenty-First

Annual Hawaii International Conference on Software Track,

pages 205–214, 1988.

[20] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-

spot addressing in large-scale multiprocessors. Computers,

IEEE Transactions on, 100(4):388–395, 1987.

[21] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and

J. Li. Transaction Chains: Achieving Serializability with Low

Latency in Geo-distributed Storage Systems. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, pages 276–291, 2013.

http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://www.reuters.com/article/2014/03/03/us-oscars-selfie-idUSBREA220C320140303
http://www.tpc.org/tpcc/
http://www.graph500.org/
http://redis.io/

	Introduction
	Commutativity
	Data type selection
	Evaluation
	Transaction protocol
	Microbenchmark: Set operations
	Case study: Retwis

