
Abstractions for Usable
Information Flow Control

in Aeolus
Winnie Cheng Dan R. K. Ports David Schultz
Victoria Popic Aaron Blankstein James Cowling
Dorothy Curtis Liuba Shrira Barbara Liskov

MIT CSAIL

Motivation

Con!dential information (e.g., !nancial data,
medical records) is increasingly stored online

Keeping this information secure is a high priority

However, building secure software
remains as difficult as ever.

Financial Management Service Example

Inspired by Mint.com
• users provide service with online banking credentials

(username and password)

• system periodically downloads & aggregates
transaction info from banks

• presents report to user

Financial Management Service Example

Security requirements
• don’t expose one user’s !nancial data to another

• bank passwords should only be used to log in to bank;
should not even display them to user

Financial Management Service Example

Security requirements
• don’t expose one user’s !nancial data to another

• bank passwords should only be used to log in to bank;
should not even display them to user

Financial Management Service Example

Security requirements
• don’t expose one user’s !nancial data to another

• bank passwords should only be used to log in to bank;
should not even display them to user

Much code needs to be trusted to ensure these
• all application code that handles !nancial data

• third-party libraries (e.g., to parse data or draw graphs)

Aeolus
Platform for building new secure applications
(available as a set of Java libraries)

Uses decentralized information !ow control
to avoid information leaks

Information Flow Control
Specify restrictions on when information can be
released (instead of access control)

• allows untrusted code to access sensitive information
but not to release it

• only trusted code allowed to remove restrictions on
information "ow (“declassify”)

Historically: military IFC systems (con!dential, secret, etc.)

Decentralized IFC (DIFC) extends model to many users

Previous DIFC Work
Language-based approaches (e.g., Jif)

• static analysis: IFC enforced through type system,
at !ne granularity (individual variables)

DIFC operating systems (e.g., Asbestos, HiStar, Flume)

• dynamic: track information "ow at the level of processes and !les

Aeolus: information "ow control in language runtime

• similar to OS approach, but provides higher-level abstractions

• implemented as library, so doesn’t require new OS or language
(tradeoff is larger TCB size than DIFC OSes)

Aeolus Model

“inside”
system tracks

information !ow
dynamically

“outside”
requires

declassi"cation
to release info

Internet

Aeolus

App App

…
Aeolus

App

Aeolus Contributions
New security model

• designed to be understandable & easy to use

• represents authority relationships in explicit graph

Programming model

• abstractions for supporting principle of least privilege

• threads with secure shared state

• distributed computation support

Security Model Concepts

Principals: represent users or roles

Tags: categories of data with security requirements
 e.g., ALICE-FINANCIAL-DATA, ALICE-PASSWORD, …

Secrecy label: set of tags
• objects (!les) have immutable labels representing

contamination of their contents

• threads have mutable labels representing
contamination of data accessed

Information Flow Rule

Information Flow Rule

Information can only !ow to a destination
more contaminated than the source

Information Flow Rule

Information can only !ow to a destination
more contaminated than the source

• Thread T can read object O only if O.label ⊆ T.label

• Thread T can write object O only if T.label ⊆ O.label

Information Flow Rule

Information can only !ow to a destination
more contaminated than the source

• Thread T can read object O only if O.label ⊆ T.label

• Thread T can write object O only if T.label ⊆ O.label

Thread T can communicate with outside only if
T.label is null

Label Manipulations
Thread labels can be changed with two operations

1. Add a tag to thread’s secrecy label
• allows thread to read contaminated data
• safe: increases restrictions on thread

2. Declassify: Remove a tag from thread’s label
• unsafe: allows sensitive data to be released
• requires authority

Authority
Each thread runs with an associated principal that
determines what it can declassify

Any thread can create a new tag
• thread’s principal has authority to declassify that tag

Principals can delegate authority to other principals
• acts-for relationships delegate all authority
• grants delegate authority for a particular tag
• either type can be revoked

Authority Structure

principal
tag

acts-for
grant

compound tag subtag

PAT PAT-DR

DR-BOB

PAT-DATA
tPAT

tPAT

Authority Structure

principal
tag

acts-for
grant

compound tag subtag

PAT PAT-DR

DR-BOB

PAT-DATA
tPAT

tPAT

DR-TOM

Authority Structure

principal
tag

acts-for
grant

compound tag subtag

PAT PAT-DR

DR-BOB

PAT-DATA
tPAT

tPAT

DR-TOM

X

Authority Structure

principal
tag

acts-for
grant

compound tag subtag

PAT PAT-DR

DR-BOB

PAT-DATA
tPAT

tPAT

DR-TOM CLINIC-ADMIN

ALL-PATIENT-DATA

other
patients

STATS

tALL

tALL

X

Authority

Aeolus uses explicit authority graph to manage
authority

• models common authority relationships

• readily supports modi!cation and revocation

• compare to capabilities as used in DIFC OSes

Programming Model

Abstractions for supporting:

• Principle of least privilege

• Secure sharing between threads

• Distributed computation

Principle of Least Privilege
Needs to be easy to drop and regain authority

Two mechanisms:

• Reduced authority calls:
run function with different principal (lower authority)
e.g., drop all authority when invoking untrusted library

• Authority closures:
Java object bound to principal during construction;
object methods run with authority of that principal
e.g., grant authority to code that fetches bank transactions

Threads and Isolation
Each thread has security state:
associated principal and secrecy label

Threads must be isolated to ensure
information "ow obeys label restrictions
• can’t allow threads to share memory directly

Threads can only share data through safe Aeolus
mechanisms
• shared objects

• RPCs

• !le system

Threads and Isolation
Each thread has security state:
associated principal and secrecy label

Threads must be isolated to ensure
information "ow obeys label restrictions
• can’t allow threads to share memory directly

Threads can only share data through safe Aeolus
mechanisms
• shared objects

• RPCs

• !le system } support distributed applications
(see paper)

• shared objects

Shared Objects

Can be referenced from multiple threads

Each shared object has a secrecy label (like !les);
Aeolus platform checks labels on access

• Simple built-in example: boxes
shared objects with a get/put interface

• Developers can de!ne new shared object types;
Aeolus adds appropriate label checks

Boxes

Labeled object with get/put interface
 Box.get() {
 if (this.label ⊈ thread.label)
 throw InfoFlowException
 return copy(this.contents)
 }

Allows thread to hold reference to sensitive data
without being contaminated by its contents until read

User-De!ned Shared Objects
Extending AeolusShared base class causes Aeolus
platform to add runtime label check to all methods
class SharedHashTable<T> extends AeolusShared {

public SharedHashTable(Label label) {
super(label);

}

public T get(String key) {
if (thread.label != object.label)
throw InfoFlowException;

 return copy(data[key]);

}
}

User-De!ned Shared Objects
Extending AeolusShared base class causes Aeolus
platform to add runtime label check to all methods
class SharedHashTable<T> extends AeolusShared {

public SharedHashTable(Label label) {
super(label);

}

public T get(String key) {
if (thread.label != object.label)
throw InfoFlowException;

 return copy(data[key]);

}
}

User-De!ned Shared Objects
Extending AeolusShared base class causes Aeolus
platform to add runtime label check to all methods
class SharedHashTable<T> extends AeolusShared {

public SharedHashTable(Label label) {
super(label);

}

public T get(String key) {
if (thread.label != object.label)
throw InfoFlowException;

 return copy(data[key]);

}
}

Aeolus platform can’t tell if method is
read-only, so assumes it both reads and writes

User-De!ned Shared Objects
Extending AeolusShared base class causes Aeolus
platform to add runtime label check to all methods
class SharedHashTable<T> extends AeolusShared {

public SharedHashTable(Label label) {
super(label);

}

public T get(String key) {
if (thread.label != object.label)
throw InfoFlowException;

 return copy(data[key]);

}
}

Aeolus platform can’t tell if method is
read-only, so assumes it both reads and writes

Implementing Isolation
Rely on memory safety of JVM
• copy all arguments passed to a newly-forked thread

• also, all arguments and result of shared object calls

• needs to be a deep copy, except references to shared objects OK

Disallow unsafe features via Java SecurityManager &
bytecode veri!cation
• native code (except in approved libraries)
• re"ection

• static variables

Implementing Copying
Need to copy arguments to forks and shared object calls

• can’t use Java’s Object.clone()
(user-provided clone functions might be unsafe)

• serialize to string then deserialize too slow:
6.3 μs to copy empty obj (much validation, re"ection)

• built new cloning library
• lower-level, optimized: 93 ns per object copied
• skips copying objects that are safely sharable:

only contain immutable state or references to shared objs

Performance (Micro)

Reduced authority call 51 ns

 (if dropping all authority) 7.7 ns

Closure call 83 ns

Shared object call 8.9 ns +
93 ns per object copied

Java method call 4 ns

Performance (Macro)

Benchmark based on !nancial management service

• uses reduced authority calls, authority closures,
shared state, label manipulations

323 ms/request; Aeolus adds 0.4 ms (0.15%) overhead

Overhead of security operations low in applications
that do real work

Conclusion
Aeolus: platform for building secure applications
with decentralized information "ow control

• simpli!ed DIFC model with explicit authority graph

• abstractions for supporting principle of least privilege:
reduced authority calls & authority closures

• isolated threads with secure shared state

More information and preliminary release available at
http://pmg.csail.mit.edu/aeolus/

http://pmg.csail.mit.edu/aeolus/
http://pmg.csail.mit.edu/aeolus/

